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Modeling and Analysis of biological
systems

Goal of this work: investigating the application of formal methods to

biological systems
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Mitochondria Theory of Aging

Mitochondria

• Generate the majority of the cellular ATP

• Produce reactive oxygen species that damage proteins, membranes and
the mitochondrial DNA (mtDNA)

Damages impair ATP production but not replication of mtDNA

How defective mitochondria might accumulate?

”Survival of the slowest” hypothesis [Grey 1997]:

• Accumulation by lowering degradation rate

• Degradation depends on membrane damage

• Decreased respiratory activity⇒ Inflict membrane damage at a slower
rate

A mathematical model proposed by [Kowald and Kirkwood 2000] to ex-
amine this hypothesis
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Mathematical Model [Kowald and
Kirkwood 2000]

Additional hypothesis: defective mitochondria have a reduced growth rate.
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Mathematical Model [Kowald and
Kirkwood 2000]

γ, β, α such that γ > β > α are the decay rates

9 differential equations: 6 equations are for the various types of mitochon-
dria, 1 for the level of antioxidant, 1 for the ATP level and one for the
amount of radicals.

Variables MMi and MDMi: populations of intact and damaged mitochon-
dria. i ∈ {1, 2, 3} level of membrane damage.

Variables RadM and RadDM : radical concentrations in intact and dam-
aged mitochondria, related by RDF (radical difference factor).

Rate kM of moving to a higher membrane damage class, a rate kD of
converting intact into defective mitochondria.

The model also contains a generic antioxidant species (AOx) that destroys
radicals.
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Synthesis Rate

Synthesis rate controlled by the cellular energy level, modeled using ”artif-
ical promoter”

k1

1 + (ATP/ATPc)n

(constant n modelling how sensitive the promoter to deviation from control
parameter ATPc)
Synthesis rate has an upper limit k1
Synthesis requires energy⇒ Synthesis rate depends on ATP concentration

k1

1 + (ATP/ATPc)n

ATP

ATP + ATPc

Growth disadvantages are different for each class of defective mitochondria
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Hypothesis Validation

Analysis Problem: studying the influence of the turnover rate and initial
situations on the stability of the system.

• Numerical solution can only approximate single solutions

• Reachability computation can characterize sets of all possible solutions.
Systems with non-linear dynamics remain a challenging problem.
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Hybridization Approach
ẋ = f (x), x ∈ X , f is Lipschitz

Principle

• Complex system (difficult to analyse)→ piecewise less complex system
(easier to analyse)

• In this work, we use different affine dynamics in different approximation
domains

• Control of dynamics approximation error → Accuracy of trajectory
approximation

D1

P1

P0

P2

D2
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Approximation Domain Construction

• Given a desired error bound ε, compute a domain D such that

– |f (x)− l(x)| ≤ ε, x ∈ D
– Large domains → less frequent domain construction

• The accuracy of dynamics approximation is important (in hybrid sys-
tems, the problem of spurious trajectories can be aggravated by discrete
transitions)
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Interpolation over Simplicial
Approximation Domains

ẋ(t) = f (x(t)), x(t) ∈ Rn

Approximate Dynamics

• ẋ(t) = l(x(t)) + u(t)

– Affine function: l(x(t)) = Ax(t) + b

– Input: ||u(·)|| ≤ µ such that ∀x ∈ ∆ ||f (x)− l(x)|| ≤ µ

Interpolation Over a Simplex ∆

• Interpolation: l(vi) = f (vi), for all vertices vi of ∆
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Interpolation Error

For all x ∈ ∆, ||f (x)− l(x)|| ≤ δ∆
r2
c (∆)

2 .

• δ∆ is the maximal curvature of f in ∆

• rc(∆) is the radius of the smallest ball containing the simplex ∆.

∆

rc(∆)

min-containment circle

• By exploiting the curvature of f (x) we can compute a larger simplex
that guarantee the same error bound
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Curvature
fi(x) is the ith component of the vector of functions f
Curvature

• Hessian matrix H i(x) associated with each fi is a matrix whose ele-

ment H i
jk(x) = ∂2fi

∂xjxk

• For a unit vector v, the curvature of fi along the direction v is
vTH i(x)v.
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Exploiting Curvature

∆ ∆̂

Observation

||f (x)− l(x)|| ≤ δ∆
r2

c(∆̂)

2
When the largest curvature in one direction is much greater than the largest
curvature in another ⇒ Shrink along the directions with small curva-
tures
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“Isotropic” Mapping
Curvature Bound Matrix C
∀i ∈ {1, . . . , n} ∀x ∈ ∆; ∀v ∈ Rn

||v|| = 1 ∧ |vTH i(x)v| ≤ vTCv.

Transformation Ω matrix formed by eigenvectors of C, ξi eigenvalues of C

T = Ω


√
ξ1/ξmax 0 . . . 0

0
√
ξ2/ξmax . . . 0

. . .

0 . . .
√
ξn/ξmax

 ΩT .



•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

Summary of Recent Results
Methods for computing C for systems with non-constant Hessian matrices

Optimal Domains for a Class of Quadratic Systems
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Large Error Bound

Small Error Bound
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Regular Simplex

Isotropic Transformation
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Aging Model

Reachability computation results are consistent with the simulation results:
With (normalized) turnover rate too small (≤ 0.6) or too high (> 11) the
system is unstable

The computation time for 1000 iterations is 23.3 minutes (for standard
turnover rate).
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Lac Operon

Lac Operon: biochemical feedback mechanism through which the bac-
terium E. Coli adapts to the lack of Glucose in its environment by switching
to a Lactose diet.

Ṙa = τ − µ ∗Ra − k2RaOf + k−2(χ−Of)− k3RaI
2
i + k8RiG

2

Ȯf = −k2raOf + k−2(χ−Of)

Ė = νk4Of − k7E

Ṁ = νk4Of − k6M

İi = −2k3RaI
2
i + 2k−3F1 + k5IrM − k−5IiM − k9IiE

Ġ = −2k8RiG
2 + 2k−8Ra + k9IiE

Variables denote the concentrations of different reactants, such as Ra (ac-
tive repressor) Of (free operator), E (enzyme), M (mRNA), Ii (internal
inducer), and G (glucose).



•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

Lac Operon

We studied the behavior of this 6-dimensional system around a quasi-
steady state for the first 4 variables.

Initial states in Ii ∈ [1.9, 2.0] and G ∈ [25.9, 26].

When k−1 = 2.0 the system exhibits a stable focus and when k−1 = 0.008
the system exhibits a limit cycle. Computation times are 3 and 5 minutes,
respectively.
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Blood vessels
A biochemical network [Karagiannis, Popel 2002] modelling the loos-
ening of the extra-cellular matrix around blood vessels.

System of quadratic differential equations with 12 variables

m2

mt1

t2
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Thank You
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Reachability analysis methods
Direct methods

• Track the evolution of the reachable set under the flow of the system.
Various set representations: e.g. polyhedra, zonotopes, ellipsoids, level
sets

• Exact results, or accurate approximations with error bounds. Using
symbolic or numerical computations

Indirect methods

• Abstraction methods: reducing to a simpler system that preserves the
property (e.g. [Tiwari & Khanna 02; Alur et al. 02; Clarke et al. 03])

• Achieve a proof of the property without computing the reachable set:
e.g. Barrier certificates [Prajna & Jadbabaie04], polynomial invariants
[Tiwari & Khanna 04].

? Scalability is still challenging (complexity and size of real-life systems)


