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Figure 3. Phase diagram showing the partitioning into a
subcritical and supercritical region; reported pair of disso-
ciation constants [10] indicated as solid dot.

an randomly picked domain-pair (i, j) is bond to each
other computes asymptotically to the relative frequency
of present (i, j) bonds �zij� with respect to all possible
bonds, i.e.,

�zij�
N2�xi��xj�

≡ Tij

N
,

that establishes the relation between the domain prefer-
ence and the equilibrium number of expected bonds. In
order to compute �zij� for the receptor cluster model we
need to determine the dissociation constants Γij . Accord-
ing to direct pull-down assays in [10] the receptor - CheW
adaptor dissociation constant amounts to Γab = 10.8±0.7
µM, while the CheW - CheA dissociation constant was
measured to be Γcd = 6.0± 0.2 µM. With a reported cell
volume of 1.4×10−15 L for E. coli we obtain Γab = 9100
and Γcd = 5060 molecules per cell. With an estimated to-
tal [11] of 17± 2 µM (14330 per cell) Tsr and Tar recep-
tors and the assumption on the stochiometric ratio we can
determine the two nonzero entries of T. The largest eigen-
value in absolute terms of TE turns out to be λ = 0.79.
Although close to the percolation threshold the model is
subcritical for this set of dissociation constants. We next
sample over these constants in order to determine the per-
colation boundary. In Fig. 3 we show the phase plane that
is partitioned into a subcritical and supercritical phase.

5. CONCLUSION

We connected the framework of random site-graphs with a
notion of abstract protein interaction networks by looking
at the asymptotic probability distribution of such a net-
work. For unconditional and non-competitive binding the
mean occupancy level of sites is given analytically. With
this level and the domain configuration of the involved
proteins the percolation threshold or liquidity index for the
network can be determined. Based on recent experimen-
tal evidence we devised a model for chemoreceptor clus-
tering in E. coli and analyze its criticality. The model’s
subcriticality for constants in [10] gives rise to interesting

questions. Is there another stoichiometry between recep-
tor, CheW and CheA? May the in vivo dissociation con-
stants be different from the ones in [10]?
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4.4 Subcritical bicolor systems

A particular, and particularly simple case of bicolor systems is when one has a

single agent type bearing one stub of each colour a, b. Connected components

are chains, �ma� = �mb� = 1, N = 1, and λ = � ≤ 1 which is only critical if

K = 0. Clearly the probability that a given chain has length k will vary as

�k and decrease rapidly with k. This is in fact a more general phenomenon.

If all nodes contain exactly one stub of type a, then the underlying system is

subcritical -unless K = 0. Indeed, the assumption forces �ma(ma − 1)� = 0

and N = 1, so:

λ = � =
1 + �mb�+ K −

�
(1 + �mb�+ K)2 − 4�mb�

2
≤ 1

One sees that the noise term N plays a key role in criticality. Intriguingly,

this suggests that large scale polymers made of divalent monomers, because

they cannot use too low a K (that would lead to irreversible behaviours),

need helper agents who are trivalent or more. Of course this must be taken

with a pinch of salt, because biological polymers usually grow in a directed

way (and therefore should be idealised by conditional rules which our analytic

approach cannot cope with at the moment), and because we are dealing with

an idealisation in the first place.

Note that this does not apply to our original 2a, 3b example (§4.1), and indeed,

by choosing carefully the parameters Z, and K, it is possible to obtain critical

behaviours; the liquidity index is given by:

λ(p, K) :=
2 + p + K −

�
(2 + p + K)2 − 24p(1− p)

2

�
3p(1− p)

with p := p(Z = 3b) the ratio of 3b agents. Plotting λ (Fig. 4) shows where

critical behaviour happens.

5 Conclusion

In general a Kappa rule set determines a notion of random graph, namely

its stationary probability distribution (under mild assumptions of ergodicity

of the underlying Markov chain). Sometimes the state space accessible to a

rule set is so large, and the dynamics driving the system spread so thinly

on the said state space (ie the stationary entropy is so large) that it cannot

be approximated in any meaningful way by a particular average state. When

this is the case -one has to look at a particular state, at least to some extent,

16

p = proportion of  3bK = ab dissoc rate

control?
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A and a free site b; or unbind an already existing bond.

We write γ+
i,j , γ

−
i,j > 0 respectively for the forward (association) and backward (dissociation)

rate constants of r(i, j). We define Γ i,j = γ−
i,j/γ

+
i,j ∈ R+, and write Γ for the associated matrix of

dimensions vA × vB .
All site graphs in G(nA, nB) are inter-reachable. Indeed, one can start from x0, the totally

disconnected state, and reach any other state by simply creating all the needed connexions. Since

the transition graph over G(nA, nB) is finite, the continuous-time Markov chain underpinning the

dynamics is ergodic (aka irreducible and positive-recurrent) and has a unique invariant probability.

Note that, as soon as vA, vB ≥ 2, the dynamics can build polymers, meaning connected site

graphs the size of which is only bounded by the total number of available nodes N = nA + nB (see

Fig. 1).

(Depending on the definition of matching for rules, the set of graphs reachable from x0 includes

double AB bonds like alkenes or not; the model presented in the appendix allows double bonds

because the Kappa rules are shorter to write, but as this complicates things a bit on the theory

side, we suppose here that rules can only bind nodes that are not yet sharing an edge. We will see

that the error made in simulations is negligible.)

2 Stochastic equilibrium

Our first step is to characterize the models for which the invariant probability is an equilibrium

(aka has detailed balance), as when it is the case, this will give us a computational handle on the

long-term behaviour of the system.

Theorem 1 Γ has an equilibrium iff Γ = ΓAΓ t
B for some ΓA ∈ Rv(A)

+ , ΓB ∈ Rv(B)
+ .

Proof: Consider two states x, y in G(nA, nB) such that there exists a (one-step) transition from x
to y (and therefore from y to x, by reversibility of rules).

Wlog, suppose y is obtained from x by adding a bond between nodes u : A, v : B.

Both u, v have a definite local occupancy state in x, say i and j, and there is therefore only one

rule the application of which underlies this transition, namely r(i, j). The ratio of the backward

and forward rates is given by:

ρ(x, y) =
Γi,j

(vA − i)(vB − j)
(1)

Indeed, in order to bind nodes u, v of x, one has to choose one of the vA − i free sites of u, and the

same for v. As i < vA, and j < vB the above formula is always defined.

By connectedness of the transition graph, over G(nA, nB), we know that there is at most one

energy function V which describes the equilibrium (it might not exist but it is unique), up to an

additive constant.

Assuming wlog that V (x0) = 0, we know that if V exists, it must verify:

V (x) =

�

(z,z�)∈φ:x0→x

ln ρ(z, z�) (2)

where φ is a sequence of successive transitions leading from x0 to x. For V to be consistent, we

need this definition to be independent of the choice of φ. It is enough to show that two successive
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3

equilibrium/cooperative case

bindings on the same node u obtain the same ∆V , as this is the only case where to instances of
rules interact in a non trivial way (up to reversibility).

So, suppose u : A has occupancy i in x and gets bound successively to v1 : B of occupancy j1,
to obtain the intermediate y, and then to v2 : B of occupancy j2, to obtain z. (As we do not allow
alkene formation, v1 �= v2.)

The product of the rate ratios along the successive transitions ρ(x, y1)ρ(y1, z) is:

Γi,j1Γi+1,j2

(vA − i)(vB − j1)(vA − i− 1)(vB − j2)

Path-independence forces the above to be constant under exchanging the roles of v1 and v2, which
leads to the following simple constraint (note that the denominator does not depend on the order):

Γi,j1Γi+1,j2 = Γi,j2Γi+1,j1

and by symmetry (exchanging the roles of A and B):

Γi1,jΓi2,j+1 = Γi1,j+1Γi2,j

It is easy to see that the above two equations hold iff:

Γ0,0Γi,j = Γi,0Γ0,j

and the statement follows with ΓA(i) = Γi,0Γ0,0
− 1

2 , ΓB(j) = Γ0,jΓ0,0
− 1

2 . ✷
There are a few remarks worth making here: first, allowing for alkenes would not add any further

constraints; second, the equilibrium condition is reminiscent of the condition derived on an earlier
paper for the validity of a static analysis of reachability based on views [1] - it forces some splitting
of the dependency of the Γ in the occupancies i, j; third, the condition above does not constrain
rate constants but only their ratios Γi,j , thus, it is always possible to multiply jointly γ+

i,j and γ−
i,j

by an arbitrary positive scalar, without altering the equilbrium or its existence.
We will suppose from now on that Γ satisfies the equilibrium condition.
The proof above, in the case the equilibrium condition is fulfilled, gives an explicit expression

for the energy:

Proposition 1 Supposing Γ has an equibrium, the underlying energy is given by:

V (x) =
�

u∈x

ln

�
0≤i<o(u) Γτ(u)(i)

[o(u); vτ(u)]
(3)

with τ(u) ∈ {A,B} the type of node u in x, vτ(u) it valence, o(u) its occupancy level, and [m;n] the
number of injections/ordered choices of m elements into n elements.

Proof: We prove the formula by induction on the number of bonds in x.
If there are none, then x = x0 and V (x0) = 0.
Suppose now this is true for x, and add a bond in x between nodes u : A and v : B with

respective occupancies i, j. The difference of energy incurred by this addition is:

V (y)− V (x) = ln
Γτ(u)(o(u))

(vτ(u) − o(u))
+ ln

Γτ(v)(o(v))

(vτ(v) − o(v))
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A�
i = −1i<vA

�

0≤j<vB

γ+
i,j(vA − i)(vB − j)AiBj

− 1i>0

�

0<j≤vB

γ−
i−1,j−1Ai : Bj

+ 1i>0

�

0<j≤vB

γ+
i−1,j−1(vA − i+ 1)(vB − j + 1)Ai−1Bj−1

+ 1i<vA

�

0≤j<vB

γ−
i,jAi+1 : Bj+1

(4)

We get similar equations for the Bjs.

A word about clashes and the square root approximation; here there is no approximation in

expressing [Ai, Bj ;x] as [Ai;x]× [Bj ;x] as Ai and Bj cannot clash.

4.1 Additional assumption

The problem with the equations above is that they do not form a self-consistent system. Indeed

some terms require the knowledge of the ‘bond observables’ Ai : Bj which one can a priori only

infer from the knowledge of x. Following the general fragmentation procedure at this stage,has one

writing a similar ODE for the Ai : Bjs. The problem is that one can now have an event centered

on a given bond uabv (whether to create it or to delete it) will have consequences on the other

bond observables attached to u and v; thus, the derivative of Ai : Bj will contain ternary terms

of the form Ai : Bj : Ak, etc. It is easy to show that this procedure generates unboundedly many

observables. So if we want some computational handle on the eventual mean values of the Ai, Bj ,

we need to do something else.

Suppose γ−
i,j = γ−

i , and γ+
i,j = γ+

i do not depend on j, we can rewrite the ODE above self-

consistently:

A�
i = 1{i<vA} · (γ−

i (i+ 1)Ai+1 − γ+
i (vA − i)Ain

f
b )

+ 1{i>0} · (−γ−
i−1iAi + γ+

i−1(vA − i+ 1)Ai−1n
f
b )

(5)

where we have written nf
b for the the number of free sites of type b in x (not to be confused with

the number of free B’s, written B0) which satisfies:

nf
b = vBnB −

�

0≤j≤vB

jBj = vBnB −
�

0≤i≤vA

iAi (6)

This simplified differential system, indexed by 0 ≤ i ≤ vA is now indeed self-consistent as every

variable, including nf
b which using Eq.6 can also be expressed in terms of the Ais, and thus, there

is no longer a need to look back at x to understand the implied dynamics (even the Bjs are not

needed).

Note that our new assumption, which we suppose will hold onwards, γ±
i,j = γ±

i , evidently entails

the equilibrium existence condition of Th.1.

8

deterministic approx.
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4.2 Deterministic steady state

Putting everything together we obtain:

Proposition 2 The deterministic steady state value of Ai, 0 ≤ i ≤ vA, assuming γ±
i,j = γ±

i , is
given by the following system of equations with parameters nA, nB, and Γi, 0 ≤ i ≤ vA:

nA =
�

0≤i≤vA

Ai

nf
B = vBnB −

�

0≤i≤vA

iAi

Ai =

�
vA
i

� �

0≤k<i

Γ−1
k · (nf

b )
i ·A0

(7)

Proof: If we write α−
i = γ−

i (i + 1), and α+
i = γ+

i (vA − i)nf
b , and set A�

i = 0 in Eq.5, we get the
following systems of equations:

α−
0 A1 = α+

0 A0

α−
i−1Ai + α+

i Ai = α−
i Ai+1 + α+

i−1Ai−1

α−
vA−1AvA = α+

vA−1AvA−1

which implies Ai+1 = α+
i /α

−
i Ai = (vA − i)/(i+ 1) · Γ−1

i · nf
b ·Ai for 0 ≤ i < vA. ✷

Note that one can derive the above equations directly by saying that at equilibrium one must
have γ−

i (i+1)Ai+1 = γ+
i (vA−i)nf

bAi, ie the likelihood that an Ai+1-link breaks equals the likelihood
that one is created.

We can rescale this equations by making all quantities relative to the total agent population
N = nA + nB ; this needs modifying the ‘volume’ of the system and replacing Γi with Γi/N .

Writing:

ai = Ai/N, a = nA/N, b = nB/N, Ki:=

�
0≤k<i Γk�vA
i

�
N i

we obtain the dimensionless steady state equations for 0 < i ≤ vA:

Ki · ai = (a−
�

0<k≤vA

ak) · (vBb−
�

0≤k≤vA

kak)
i (8)

5 Outline from there

From there, it remains to:
- 1) do an urn model to evaluate the random size of a complex discovered by going out of a B(b)
(there is an easy recursive expression - as in the liquidity paper) justified by the energy functional
(which establishes independence of the plugging process);
- and 2) return to the WCSB note to see how cooperative the bindings need to be to get a critical
system (intuitively with the rewards the edges will tend to aggregate and the branching process
that discovers a component should last longer)
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free sites. All choices lead to different concrete graphs, but the same abstract one. Similarly, given

a pair of connected nodes with occupancies i ≤ vA, j ≤ vB , exaclty one backward rule in R(i, j)
applies, namely the one that breaks the (unique) connexion between the nodes.

Pick x, y abstract site graphs connected via an r(i, j) transition, and a concrete c above x. By
the considerations above, the rate at which c jumps in y (meaning to some concrete graph in the

equivalence class y) is γ+
(i, j)(vA− i)(vB − j), while the reverse rate at which some c� over y jumps

in x is γ−
(i, j).

Hence, the dynamics of the concrete transition system is identical to the one we have used in our

theoretical investigation (one says sometimes that the quotient is a strong stochastic bisimulation

of continuous-time Markov chains), and we can safely use it to explore the behaviour of our models

in a numerical way.

We can now turn to the description of the Kappa files that constitute together our concrete

model.

7 The numerical model

7.1 Agents, init and parameters

Notice the snapshot taken at time 2.5 at the end of this file (now that we have a way to use

variables in initial states we can the exact rescale just by changing the ’vol’ variable). This is the

anticooperative model run in sub-Fig. 2(c)

%agent: B(b1,b2)
%agent: A(a1,a2,a3)

%var: ’vol’ 100
%var: ’k_on’ 0.1/’vol’

%var: ’k_off’ 2
%var: ’k_off_vee’ 1/5 * ’k_off’
%var: ’k_off_tee’ 1/50 * ’k_off’

%var: ’n_A’ (1000 * ’vol’)
%var: ’n_B’ (1500 * ’vol’)

%init: ’n_A’ (A(a1,a2,a3))
%init: ’n_B’ (B(b1,b2))

7.2 Rules

If we apply this set of definitions to our running example where vA = 3, vB = 2, and we have assumed

rules have no dependency in the occupancy of B, we get the following set of vAvB2vA−1
= 24

reversible rules (so 48 KaSim rules as the syntax does not include bidirectional rules, and, anyway,

we need to assign differently the forward and the backward rates).

’b1-a1-11’ B(b1), A(a1,a2!_,a3!_) -> B(b1!0), A(a1!0,a2!_,a3!_)@ ’k_on’
’b1-a1-10’ B(b1), A(a1,a2!_,a3 ) -> B(b1!0), A(a1!0,a2!_,a3 )@ ’k_on’

11
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rules ...

’b1-a1-01’ B(b1), A(a1,a2 ,a3!_) -> B(b1!0), A(a1!0,a2 ,a3!_)@ ’k_on’
’b1-a1-00’ B(b1), A(a1,a2 ,a3 ) -> B(b1!0), A(a1!0,a2 ,a3 )@ ’k_on’

’b1 a1-11’ B(b1!0), A(a1!0,a2!_,a3!_) -> B(b1), A(a1,a2!_,a3!_)@ ’k_off_tee’
’b1 a1-10’ B(b1!0), A(a1!0,a2!_,a3 ) -> B(b1), A(a1,a2!_,a3 )@ ’k_off_vee’
’b1 a1-01’ B(b1!0), A(a1!0,a2 ,a3!_) -> B(b1), A(a1,a2 ,a3!_)@ ’k_off_vee’
’b1 a1-00’ B(b1!0), A(a1!0,a2 ,a3 ) -> B(b1), A(a1,a2 ,a3 )@ ’k_off’

’b1-a2-11’ B(b1), A(a2,a1!_,a3!_) -> B(b1!0), A(a2!0,a1!_,a3!_)@ ’k_on’
’b1-a2-10’ B(b1), A(a2,a1!_,a3 ) -> B(b1!0), A(a2!0,a1!_,a3 )@ ’k_on’
’b1-a2-01’ B(b1), A(a2,a1 ,a3!_) -> B(b1!0), A(a2!0,a1 ,a3!_)@ ’k_on’
’b1-a2-00’ B(b1), A(a2,a1 ,a3 ) -> B(b1!0), A(a2!0,a1 ,a3 )@ ’k_on’

’b1 a2-11’ B(b1!0), A(a2!0,a1!_,a3!_) -> B(b1), A(a2,a1!_,a3!_)@ ’k_off_tee’
’b1 a2-10’ B(b1!0), A(a2!0,a1!_,a3 ) -> B(b1), A(a2,a1!_,a3 )@ ’k_off_vee’
’b1 a2-01’ B(b1!0), A(a2!0,a1 ,a3!_) -> B(b1), A(a2,a1 ,a3!_)@ ’k_off_vee’
’b1 a2-00’ B(b1!0), A(a2!0,a1 ,a3 ) -> B(b1), A(a2,a1 ,a3 )@ ’k_off’

’b1-a3-11’ B(b1), A(a3,a1!_,a2!_) -> B(b1!0), A(a3!0,a1!_,a2!_)@ ’k_on’
’b1-a3-10’ B(b1), A(a3,a1!_,a2 ) -> B(b1!0), A(a3!0,a1!_,a2 )@ ’k_on’
’b1-a3-01’ B(b1), A(a3,a1 ,a2!_) -> B(b1!0), A(a3!0,a1 ,a2!_)@ ’k_on’
’b1-a3-00’ B(b1), A(a3,a1 ,a2 ) -> B(b1!0), A(a3!0,a1 ,a2 )@ ’k_on’

’b1 a3-11’ B(b1!0), A(a3!0,a1!_,a2!_) -> B(b1), A(a3,a1!_,a2!_)@ ’k_off_tee’
’b1 a3-10’ B(b1!0), A(a3!0,a1!_,a2 ) -> B(b1), A(a3,a1!_,a2 )@ ’k_off_vee’
’b1 a3-01’ B(b1!0), A(a3!0,a1 ,a2!_) -> B(b1), A(a3,a1 ,a2!_)@ ’k_off_vee’
’b1 a3-00’ B(b1!0), A(a3!0,a1 ,a2 ) -> B(b1), A(a3,a1 ,a2 )@ ’k_off’

’b2-a1-11’ B(b2), A(a1,a2!_,a3!_) -> B(b2!0), A(a1!0,a2!_,a3!_)@ ’k_on’
’b2-a1-10’ B(b2), A(a1,a2!_,a3 ) -> B(b2!0), A(a1!0,a2!_,a3 )@ ’k_on’
’b2-a1-01’ B(b2), A(a1,a2 ,a3!_) -> B(b2!0), A(a1!0,a2 ,a3!_)@ ’k_on’
’b2-a1-00’ B(b2), A(a1,a2 ,a3 ) -> B(b2!0), A(a1!0,a2 ,a3 )@ ’k_on’

’b2 a1-11’ B(b2!0), A(a1!0,a2!_,a3!_) -> B(b2), A(a1,a2!_,a3!_)@ ’k_off_tee’
’b2 a1-10’ B(b2!0), A(a1!0,a2!_,a3 ) -> B(b2), A(a1,a2!_,a3 )@ ’k_off_vee’
’b2 a1-01’ B(b2!0), A(a1!0,a2 ,a3!_) -> B(b2), A(a1,a2 ,a3!_)@ ’k_off_vee’
’b2 a1-00’ B(b2!0), A(a1!0,a2 ,a3 ) -> B(b2), A(a1,a2 ,a3 )@ ’k_off’

’b2-a2-11’ B(b2), A(a2,a1!_,a3!_) -> B(b2!0), A(a2!0,a1!_,a3!_)@ ’k_on’
’b2-a2-10’ B(b2), A(a2,a1!_,a3 ) -> B(b2!0), A(a2!0,a1!_,a3 )@ ’k_on’
’b2-a2-01’ B(b2), A(a2,a1 ,a3!_) -> B(b2!0), A(a2!0,a1 ,a3!_)@ ’k_on’
’b2-a2-00’ B(b2), A(a2,a1 ,a3 ) -> B(b2!0), A(a2!0,a1 ,a3 )@ ’k_on’

’b2 a2-11’ B(b2!0), A(a2!0,a1!_,a3!_) -> B(b2), A(a2,a1!_,a3!_)@ ’k_off_tee’
’b2 a2-10’ B(b2!0), A(a2!0,a1!_,a3 ) -> B(b2), A(a2,a1!_,a3 )@ ’k_off_vee’
’b2 a2-01’ B(b2!0), A(a2!0,a1 ,a3!_) -> B(b2), A(a2,a1 ,a3!_)@ ’k_off_vee’
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observables ...

’b2 a2-00’ B(b2!0), A(a2!0,a1 ,a3 ) -> B(b2), A(a2,a1 ,a3 )@ ’k_off’

’b2-a3-11’ B(b2), A(a3,a1!_,a2!_) -> B(b2!0), A(a3!0,a1!_,a2!_)@ ’k_on’
’b2-a3-10’ B(b2), A(a3,a1!_,a2 ) -> B(b2!0), A(a3!0,a1!_,a2 )@ ’k_on’
’b2-a3-01’ B(b2), A(a3,a1 ,a2!_) -> B(b2!0), A(a3!0,a1 ,a2!_)@ ’k_on’
’b2-a3-00’ B(b2), A(a3,a1 ,a2 ) -> B(b2!0), A(a3!0,a1 ,a2 )@ ’k_on’

’b2 a3-11’ B(b2!0), A(a3!0,a1!_,a2!_) -> B(b2), A(a3,a1!_,a2!_)@ ’k_off_tee’
’b2 a3-10’ B(b2!0), A(a3!0,a1!_,a2 ) -> B(b2), A(a3,a1!_,a2 )@ ’k_off_vee’
’b2 a3-01’ B(b2!0), A(a3!0,a1 ,a2!_) -> B(b2), A(a3,a1 ,a2!_)@ ’k_off_vee’
’b2 a3-00’ B(b2!0), A(a3!0,a1 ,a2 ) -> B(b2), A(a3,a1 ,a2 )@ ’k_off’

7.3 A-observables

First we observe As with their binding arity

%var: ’A0’ A(a1,a2,a3)

%var: ’a1’ A(a1!_,a2,a3)
%var: ’a2’ A(a1,a2!_,a3)
%var: ’a3’ A(a1,a2,a3!_)

%var: ’A1’ ’a1’ + ’a2’ + ’a3’

%var: ’a1a2’ A(a1!_,a2!_,a3)
%var: ’a1a3’ A(a1!_,a2,a3!_)
%var: ’a2a3’ A(a1,a2!_,a3!_)

%var: ’A2’ ’a1a2’ + ’a1a3’ + ’a2a3’

%var: ’A3’ A(a1!_,a2!_,a3!_)

%plot: ’A0’
%plot: ’A1’
%plot: ’A2’
%plot: ’A3’

7.4 B-observables

Equivalently we can observe naughts, edges, vees and tees.

%var: ’naughts’ A(a1,a2,a3)

# edges 2 * (3 choose 1) = 6

%var: ’b1a1’ B(b1!0),A(a1!0)
%var: ’b2a1’ B(b2!0),A(a1!0)

13
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7.5 alkenes

As well as alkenes to get a sense of their frequency (very low).

# double bonds/alkenes [2;3] = 6
%var: ’Ba1a2’ B(b1!1,b2!2),A(a1!1,a2!2)
%var: ’Ba2a1’ B(b1!1,b2!2),A(a1!2,a2!1)
%var: ’Ba1a3’ B(b1!1,b2!2),A(a1!1,a3!2)
%var: ’Ba3a1’ B(b1!1,b2!2),A(a1!2,a3!1)
%var: ’Ba2a3’ B(b1!1,b2!2),A(a2!1,a3!2)
%var: ’Ba3a2’ B(b1!1,b2!2),A(a2!2,a3!1)

%var: ’alkene’ ’Ba1a2’+ ’Ba2a1’ + ’Ba1a3’ + ’Ba3a1’ + ’Ba2a3’ + ’Ba3a2’

%plot: ’alkene’

15
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idea 1: 
distributed task = deadlock-escape + local heuristics

where γ is the unique trace from a reference process p0 (naturally taken to be

the initial state of the system with zero potential).

The above is not exactly true, as there is a tiny remainder of cyclicity in

pure rC ie the trivial Church-Rosser squares (generating the causal equivalence

on traces in the terminology of the first paper). Formally the condition on ρ is

that ρ(x, y)ρ(y, z) = ρ(x, y�)ρ(y, z) when y, y� are the two intermediate forms

consecutive to scheduling two concurrent actions, as in eg:

x = 0 · a, 1 · b → y = 0a · , 1 · b → z = 0a · , 1b ·

Having said that (almost) any rate assignment works, we are looking for

realistic ones, meaning:

- concurrently implementable

- invariant under ≡
- verifies disjoint sum implies independence

- convergent aka exhaustive

3.2 Qualitative operational semantics

By thread we mean an atom with all pars and recs unfolded.

Notations: to make traces readable (as we need to compute with them on

some examples) we need a lighter version of the usual CCS notations: comma

is parallel, stacks are reversed, →f
means fork, = means recursive definition,

→s
means synch, prefixing uses the empty symbol as usual for multiplication, 0

process is also the empty symbol.

Eg

Γ · (ab+ ba) →a,∆ Γ (a∆+ ba) · b →b,∆� Γ (a∆+ ba)(b∆�
) ·

Γ · (a, b) →f Γ0 · a,Γ1 · b →a,∆ Γ0(a∆) · ,Γ1 · b →b,∆� Γ0(a∆) · ,Γ1(b∆�
) ·

There are two kinds of transitions forks and synchs (recursive definitions are

supposed guarded and invisibly unfolded):

Θ,Γ · (p, q) →f Θ,Γ0 · p,Γ1 · q
Θ,Γ · (ap+ q),Γ � · (a�p� + q�) →s Θ,Γ (a,Γ �, q) · p,Γ �

(a�,Γ, q�) · p�

3.3 simplicity of the LTS

A detail that has to do with the treatment of the sum:

x = Γ · ap+ r,Γ � · a�p� + r� → Γ (aΓ �
+ r) · p,Γ �

(a�Γ + r�) · p� = y

It is possible that ap and a�p� occur multiply in their respective threads, as in

0 · a+ a, 1 · a�.
So the rate ratio for a synchronisation on a is:

ρ(x, y) =
k�a
ka

· 1

µ(ap)
· 1

µ(a�p�)
(2)

4
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idea II: 
exhaustive search/probabilistic equilibrium

= must succeed + almost surely finite time

where γ is the unique trace from a reference process p0 (naturally taken to be

the initial state of the system with zero potential).

The above is not exactly true, as there is a tiny remainder of cyclicity in

pure rC ie the trivial Church-Rosser squares (generating the causal equivalence

on traces in the terminology of the first paper). Formally the condition on ρ is

that ρ(x, y)ρ(y, z) = ρ(x, y�)ρ(y, z) when y, y� are the two intermediate forms

consecutive to scheduling two concurrent actions, as in eg:

x = 0 · a, 1 · b → y = 0a · , 1 · b → z = 0a · , 1b ·

Having said that (almost) any rate assignment works, we are looking for

realistic ones, meaning:

- concurrently implementable

- invariant under ≡
- verifies disjoint sum implies independence

- convergent aka exhaustive

3.2 Qualitative operational semantics

By thread we mean an atom with all pars and recs unfolded.

Notations: to make traces readable (as we need to compute with them on

some examples) we need a lighter version of the usual CCS notations: comma

is parallel, stacks are reversed, →f
means fork, = means recursive definition,

→s
means synch, prefixing uses the empty symbol as usual for multiplication, 0

process is also the empty symbol.

Eg

Γ · (ab+ ba) →a,∆ Γ (a∆+ ba) · b →b,∆� Γ (a∆+ ba)(b∆�
) ·

Γ · (a, b) →f Γ0 · a,Γ1 · b →a,∆ Γ0(a∆) · ,Γ1 · b →b,∆� Γ0(a∆) · ,Γ1(b∆�
) ·

There are two kinds of transitions forks and synchs (recursive definitions are

supposed guarded and invisibly unfolded):

Θ,Γ · (p, q) →f Θ,Γ0 · p,Γ1 · q
Θ,Γ · (ap+ q),Γ � · (a�p� + q�) →s Θ,Γ (a,Γ �, q) · p,Γ �

(a�,Γ, q�) · p�

3.3 simplicity of the LTS

A detail that has to do with the treatment of the sum:

x = Γ · ap+ r,Γ � · a�p� + r� → Γ (aΓ �
+ r) · p,Γ �

(a�Γ + r�) · p� = y

It is possible that ap and a�p� occur multiply in their respective threads, as in

0 · a+ a, 1 · a�.
So the rate ratio for a synchronisation on a is:

ρ(x, y) =
k�a
ka

· 1

µ(ap)
· 1

µ(a�p�)
(2)
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where γ is the unique trace from a reference process p0 (naturally taken to be

the initial state of the system with zero potential).

The above is not exactly true, as there is a tiny remainder of cyclicity in

pure rC ie the trivial Church-Rosser squares (generating the causal equivalence

on traces in the terminology of the first paper). Formally the condition on ρ is

that ρ(x, y)ρ(y, z) = ρ(x, y�)ρ(y, z) when y, y� are the two intermediate forms

consecutive to scheduling two concurrent actions, as in eg:

x = 0 · a, 1 · b → y = 0a · , 1 · b → z = 0a · , 1b ·

Having said that (almost) any rate assignment works, we are looking for

realistic ones, meaning:

- concurrently implementable

- invariant under ≡
- verifies disjoint sum implies independence

- convergent aka exhaustive

3.2 Qualitative operational semantics

By thread we mean an atom with all pars and recs unfolded.

Notations: to make traces readable (as we need to compute with them on

some examples) we need a lighter version of the usual CCS notations: comma

is parallel, stacks are reversed, →f
means fork, = means recursive definition,

→s
means synch, prefixing uses the empty symbol as usual for multiplication, 0

process is also the empty symbol.

Eg

Γ · (ab+ ba) →a,∆ Γ (a∆+ ba) · b →b,∆� Γ (a∆+ ba)(b∆�
) ·

Γ · (a, b) →f Γ0 · a,Γ1 · b →a,∆ Γ0(a∆) · ,Γ1 · b →b,∆� Γ0(a∆) · ,Γ1(b∆�
) ·

There are two kinds of transitions forks and synchs (recursive definitions are

supposed guarded and invisibly unfolded):

Θ,Γ · (p, q) →f Θ,Γ0 · p,Γ1 · q
Θ,Γ · (ap+ q),Γ � · (a�p� + q�) →s Θ,Γ (a,Γ �, q) · p,Γ �

(a�,Γ, q�) · p�

3.3 simplicity of the LTS

A detail that has to do with the treatment of the sum:

x = Γ · ap+ r,Γ � · a�p� + r� → Γ (aΓ �
+ r) · p,Γ �

(a�Γ + r�) · p� = y

It is possible that ap and a�p� occur multiply in their respective threads, as in

0 · a+ a, 1 · a�.
So the rate ratio for a synchronisation on a is:

ρ(x, y) =
k�a
ka

· 1

µ(ap)
· 1

µ(a�p�)
(2)

4
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probabilistic equilibrium (ctmc) =

detailed balance/thermo consistency+ convergence

which is indeed equal to ln ρ(x, y) as in Eq. (1). ✷
By ergodicity of the transition graph, the dynamics decribed by Γ will drive the system to the

invariant probability with support G(nA, nB) associated to the energy V (x):

p(x) =
e−V (x)

�
y∈G(nA,nB) e

−V (y)

Note that the above calculations hold more generally for any set of homogeneous agents as long
as association/dissociation rules are limited to depend only on the local occupancy of the bindees.

We write [Ai;x] for the number of embeddings into x of a single agent A with occupancy i, and
[[Ai;x]] := [Ai;x]/i! for the number of occurrences of Ai in x.

We can rewrite the above expression for V as:

V (x) =
�

0<i≤vA
�A(i)[[Ai;x]] +

�
0<i≤vB

�B(i)[[Bi;x]]

with �τ defined as:

�τ (i) :=
�

0≤j<i ln
Γτ (j)

vτ − j

In particular all xs with the same Ai and Bj statistics are eventually equally likely. They form
an equivalence class of configurations with equal energy - the log of the cardinality of which is the
class entropy.

With this equivalent way to look at energy, we can think of �τ (i) as setting the penalty/reward
for a certain level of occupancy of an agent of type τ . The idea of cooperativity in the assembly is
that adding a bond to an already busy agent results in a smaller ∆V than would adding it to an
agent less busy.

Supposing �B(i) = 0 to simplify (equivalently ΓB(i) = 1), this is the case iff

i < j ⇒ ΓA(j) < ΓA(i) ·
vA − j

vA − i

(this follows from the definition of � above). Eg this is not the case if ΓA is a constant function of i.

3 Simulations

As an example, to which we will return later, we choose vA = 3, vB = 2 which is enough to assemble
polymers of unbounded size. We suppose that the forward rate constants γ+ do not depend on i or
j. In addition, we suppose that the backward rate constants only depend on A’s occupancy.

With this assumed, Γ (i, j) = Γ (i) does not depend on j and the conditions for equilibrium are
clearly satisified.

Typically, in the simulations, we will choose ΓA(i) as a monotonically decreasing function of i -
a choice which implies cooperativity of the assembly as we have just discussed.

Note that perfect matchings are reachable only if the stochiometry is 2nA = 3nB ; this is the
stickiest the system can get, as in this case all sites are used to form a bond. Eg if we pick nA, nB =
100, 150, we get an equilibrium probability on G(100, 150) of which a typical largest component
looks as in Fig. 1.

Clearly, there is no good way to talk about a deterministic steady state of such systems, as
for large populations, the state space accessible to probabilistic equilibrium is always increasing.

5
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with:
V0(p�) = 2�a + �b = V1(p�)

We see that V1 is sensitive to the expansion law, it is ‘truly concurrent’, while
V0 is not. In fact, according to V1, the expanded form using a sum is cheaper by
an amount of V1(Γ ) + η, even if η = 0, a sequentialized version is bolder in its
search (but then the backward options are fewer).

Also V0 ≤ V1 as a synch used en route to p is visible at least twice (in general
it occurs 2 + f(s) where f(s) is the number of forks hereditarily caused by the
synch s on a) in a stack of p.

We will see in the next section that V0 �|= E2.
We can define more variant potentials (it all depends on the accounting

balances ∆V ). In the sequel, as V1 might seems redundant - we will work with
V2 (we put them side by side for comparison):

V1(p) = η
�

θ∈p size of stack of thread θ +
�

a��a, nb synch on a�
V2(p) =

�
θ∈p,a∈A�ξa, nb of a in the stack of θ�

5 explosive growth - examples

The potential V partitions Ω(q) into level sets or energy shells ΩV (q).
We want to compute the cardinality of ΩV (q) to bound above Z.
By the labeling/universal cover property, this is the number of traces (com-

putation paths up to permutations) γ leading to ΩV .
Consider a trace φ from q to some process r in rC.
It is not true that the length of φ is n/φ has n synchs (one does not want to

count the number of forks and recursive calls) iff the total stack size of r is n
(or 2n) - because forking doubles the memory stack (and hence costs something
in terms of energy).

Consider the process

q := p(a), p(ā) (4)

p(x) := x(p(x), p(x)) (5)

or equivalently q = aq, a�q.
To find an example, we can examine upto traces obtained by maximally

synchronous executions of the process q defined above.
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. . .
→fs

�
w∈2k 0w(a) · p(a),

�
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a “concurrent” potential:
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One can 1) forbid p+ p in sums, 2) declare sums as multisets and handle the

local symmetry factor as indicated above, 3) memoize the particular term in the

sum that was used (non-commutative sums; there is a note about this in Jean’s

PhD manuscript).

4 Concurrent potentials - E1

Suppose given an initial process p0 ∈ C, and � an action-indexed vector with

values in R.
Define p ∈ Ω(p0) if ∅ · p0 →� p (reduction in fully reversible rC) - these are

the processes reachable from p0.
We examine now two potentials that are reasonable in terms of the criteria

defined in §1.

4.1 total stack size potential - dB

The operational semantics verifies detailed balance (dB) with the assignment:

V1(r, r�) = V1(r) + V1(r�)
V1(Γ · p) = V1(Γ )

V1(Γ0) = V1(Γ1) = V1(Γ ) + η/2
V1(Γ (a�, , )) = V1(Γ (a, , )) = V1(Γ ) + �a/2

(the division by 2 is natural in relation to the other potential introduced later; in

particular if there are no forks below the first level and �a, η ∈ N, then V1 ∈ N)
We suppose recursive defs are guarded and unfolded as soon as triggered by

their prefix action - so there is no need to mention them in the definition above.

Equivalently, V1(p) for p ∈ Ω(q), is ��, Γ̃ (p)� with Γ̃ (p)(a) the total number

of memory cells of type a in p - Γ̃ (p) can be seen as the multiset projection of

the memory structure of p.
Note that V1(q) = 0 with this definition, which is normal as we can always

choose a zero energy point in the (strongly) connected component of the initial

state.

We can examine the two case of transitions to understand how this choice of

potential constrains the rate constants:

– dB-forks: consider a fork

Θ,Γ · (p, q) →f Θ,Γ0 · p,Γ1 · q
∆V1 = V1(Γ ) + η = ln(k�/k)

with k, k� the forking rates (both unary), so the deeper a process is in

a search the less likely to fork; this hurry-coward tactics is locally imple-

mentable eg with k� = 1 and k = exp(−η − V1(Γ )); note how k has a

pleasing dependency on the past local to an agent. (Similar to the general

Metropolis principle.)
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fork/energy balance

synch
– dB-synchs: consider now a synch:

Θ,Γ · (ap+ q),Γ � · (a�p� + q�) →s Θ,Γ (a,Γ �, q) · p,Γ �(a�,Γ, q�) · p�
∆V1 = �a

which forces ln(k�a/ka) = �a, also locally implementable eg with k�a = 1 and
ka = exp(−�a) which means that the colliding scheduler does not need to
care about the age (understood as its Γ ) of a communication offer a, or a�.

We see that V1 is implementable concurrently, and that the only age-dependent
behaviour in a process is its increasing reluctance to fork.

4.2 total synch potential - dB

We can define another potential, given a path γ from p0 to p:

V0(p) =
�

x→sy∈γ

�a(s) (3)

where a(s) is the action used for synch s.
The above is easily seen not to depend on the choice of (a causal equivalence

representative of) γ. Indeed we know that (i) any two paths γ, γ� in [∅ · p0, p]
are causally equivalent, and (ii) equivalence is obtained by CR-squares swaps
which leave V0 invariant.

Note that the same holds for V1 above, but since V1 is directly computed
on the final process p, invariance under CR-swaps follows from the labelling
property, and one does not need to prove it.

Differently than V1, there is no inductive formula for V0(p), and to compute
it one needs to replay a reduction to p (a quadratic computation?).

We could add a term to V0 to count the forks as well.

4.3 V1 vs. V0

We can compare both potentials on simple examples:

p0 = ∅ · a(a, b, a�, b�), a� → 0a · (a, b, a�, b�), 1a� ·
→ 0a0 · a, 0a1 · b, 0a2 · a�, 0a3 · b�, 1a� ·
→ 0a0a · , 0a1b · , 0a2a� · , 0a3b� · , 1a� · = p

with:
V0(p) = 2�a + �b < 7/2�a + �b = V1(p)

We can modify p0 by using the expansion law:

p�0 = ∅ · a(ab+ ba, a�b� + b�a�), a� → 0a · (ab+ ba, a�b� + b�a�), 1a� ·
→ 0a0 · ab+ ba, 0a1 · a�b� + b�a�, 1a� ·
→ 0a0ab · , 0a1a�b� · , 1a� · = p�

6

– dB-synchs: consider now a synch:

Θ,Γ · (ap+ q),Γ � · (a�p� + q�) →s Θ,Γ (a,Γ �, q) · p,Γ �(a�,Γ, q�) · p�
∆V1 = �a

which forces ln(k�a/ka) = �a, also locally implementable eg with k�a = 1 and
ka = exp(−�a) which means that the colliding scheduler does not need to
care about the age (understood as its Γ ) of a communication offer a, or a�.

We see that V1 is implementable concurrently, and that the only age-dependent
behaviour in a process is its increasing reluctance to fork.

4.2 total synch potential - dB

We can define another potential, given a path γ from p0 to p:

V0(p) =
�

x→sy∈γ

�a(s) (3)

where a(s) is the action used for synch s.
The above is easily seen not to depend on the choice of (a causal equivalence

representative of) γ. Indeed we know that (i) any two paths γ, γ� in [∅ · p0, p]
are causally equivalent, and (ii) equivalence is obtained by CR-squares swaps
which leave V0 invariant.

Note that the same holds for V1 above, but since V1 is directly computed
on the final process p, invariance under CR-swaps follows from the labelling
property, and one does not need to prove it.

Differently than V1, there is no inductive formula for V0(p), and to compute
it one needs to replay a reduction to p (a quadratic computation?).

We could add a term to V0 to count the forks as well.

4.3 V1 vs. V0

We can compare both potentials on simple examples:

p0 = ∅ · a(a, b, a�, b�), a� → 0a · (a, b, a�, b�), 1a� ·
→ 0a0 · a, 0a1 · b, 0a2 · a�, 0a3 · b�, 1a� ·
→ 0a0a · , 0a1b · , 0a2a� · , 0a3b� · , 1a� · = p

with:
V0(p) = 2�a + �b < 7/2�a + �b = V1(p)

We can modify p0 by using the expansion law:

p�0 = ∅ · a(ab+ ba, a�b� + b�a�), a� → 0a · (ab+ ba, a�b� + b�a�), 1a� ·
→ 0a0 · ab+ ba, 0a1 · a�b� + b�a�, 1a� ·
→ 0a0ab · , 0a1a�b� · , 1a� · = p�

6

– dB-synchs: consider now a synch:

Θ,Γ · (ap+ q),Γ � · (a�p� + q�) →s Θ,Γ (a,Γ �, q) · p,Γ �(a�,Γ, q�) · p�
∆V1 = �a

which forces ln(k�a/ka) = �a, also locally implementable eg with k�a = 1 and
ka = exp(−�a) which means that the colliding scheduler does not need to
care about the age (understood as its Γ ) of a communication offer a, or a�.

We see that V1 is implementable concurrently, and that the only age-dependent
behaviour in a process is its increasing reluctance to fork.

4.2 total synch potential - dB

We can define another potential, given a path γ from p0 to p:

V0(p) =
�

x→sy∈γ

�a(s) (3)

where a(s) is the action used for synch s.
The above is easily seen not to depend on the choice of (a causal equivalence

representative of) γ. Indeed we know that (i) any two paths γ, γ� in [∅ · p0, p]
are causally equivalent, and (ii) equivalence is obtained by CR-squares swaps
which leave V0 invariant.

Note that the same holds for V1 above, but since V1 is directly computed
on the final process p, invariance under CR-swaps follows from the labelling
property, and one does not need to prove it.

Differently than V1, there is no inductive formula for V0(p), and to compute
it one needs to replay a reduction to p (a quadratic computation?).

We could add a term to V0 to count the forks as well.

4.3 V1 vs. V0

We can compare both potentials on simple examples:

p0 = ∅ · a(a, b, a�, b�), a� → 0a · (a, b, a�, b�), 1a� ·
→ 0a0 · a, 0a1 · b, 0a2 · a�, 0a3 · b�, 1a� ·
→ 0a0a · , 0a1b · , 0a2a� · , 0a3b� · , 1a� · = p

with:
V0(p) = 2�a + �b < 7/2�a + �b = V1(p)

We can modify p0 by using the expansion law:

p�0 = ∅ · a(ab+ ba, a�b� + b�a�), a� → 0a · (ab+ ba, a�b� + b�a�), 1a� ·
→ 0a0 · ab+ ba, 0a1 · a�b� + b�a�, 1a� ·
→ 0a0ab · , 0a1a�b� · , 1a� · = p�

6

One can 1) forbid p+ p in sums, 2) declare sums as multisets and handle the

local symmetry factor as indicated above, 3) memoize the particular term in the

sum that was used (non-commutative sums; there is a note about this in Jean’s

PhD manuscript).

4 Concurrent potentials - E1

Suppose given an initial process p0 ∈ C, and � an action-indexed vector with

values in R.
Define p ∈ Ω(p0) if ∅ · p0 →� p (reduction in fully reversible rC) - these are

the processes reachable from p0.
We examine now two potentials that are reasonable in terms of the criteria

defined in §1.

4.1 total stack size potential - dB

The operational semantics verifies detailed balance (dB) with the assignment:

V1(r, r�) = V1(r) + V1(r�)
V1(Γ · p) = V1(Γ )

V1(Γ0) = V1(Γ1) = V1(Γ ) + η/2
V1(Γ (a�, , )) = V1(Γ (a, , )) = V1(Γ ) + �a/2

(the division by 2 is natural in relation to the other potential introduced later; in

particular if there are no forks below the first level and �a, η ∈ N, then V1 ∈ N)
We suppose recursive defs are guarded and unfolded as soon as triggered by

their prefix action - so there is no need to mention them in the definition above.

Equivalently, V1(p) for p ∈ Ω(q), is ��, Γ̃ (p)� with Γ̃ (p)(a) the total number

of memory cells of type a in p - Γ̃ (p) can be seen as the multiset projection of

the memory structure of p.
Note that V1(q) = 0 with this definition, which is normal as we can always

choose a zero energy point in the (strongly) connected component of the initial

state.

We can examine the two case of transitions to understand how this choice of

potential constrains the rate constants:

– dB-forks: consider a fork

Θ,Γ · (p, q) →f Θ,Γ0 · p,Γ1 · q
∆V1 = V1(Γ ) + η = ln(k�/k)

with k, k� the forking rates (both unary), so the deeper a process is in

a search the less likely to fork; this hurry-coward tactics is locally imple-

mentable eg with k� = 1 and k = exp(−η − V1(Γ )); note how k has a

pleasing dependency on the past local to an agent. (Similar to the general

Metropolis principle.)

5

Monday, 6 June 2011



Any trace of length n + 1 can be obtained (perhaps in many ways but we
are looking for an upper bound) by extending one of length n, so T (n + 1) ≤
T (n)(δ0 + nδα)α, as there are at most (δ0 + nδα) active threads in a trace of
length n.

As T (0) = 1, we get lnT (n) ≤ α ln(δ0 + nδα)! = δα2O(n lnn).

Note that the first inequality is sharp if all synchs are possible, every thread
has the maximal thread count δ + 1, and none use sums. Which is exactly the
situation of the explosive example of §5.

Right above, we have used Stirling’s approximation (n/e)n ≤ n!/e ≤ n(n/e)n

- so that lnn! ≤ 1−n+(n+1) lnn = O(n lnn). As the arithmetic progression that
gives rise to the factorial samples it only with frequency 1/δα (this is sometimes
called a shifted j-factorial [17, p.46], where j = αδ, and the shift is δ0 in our
example), it seems the upper bound above

we can perhaps get better bounds than taking the factorial.�

If we return to the maximal synchronous traces computed in the preceding
section, we see that the bound above is also quite sharp.

6.4 Convergence

Now we can put both bounds to work to get the convergence of our potential.

Proposition 1 Let p0 be a α-way synchronising process with max thread cre-
ation ≤ 1 + δ with δ > 0, and suppose �m := min �a > δα2 ln(4(δ + 1)), then:

Z(p0) :=
�

q∈Ω(p0)
e−V (q) < +∞

where Ω(p0) is the set of processes reachable from ∅ · p0.

Proof. We can partition Z(p0) =
�

n Zn by number of synchs, Zn = e−V (q) |T (n)|.
By Lemma 4, Zn ≤ exp (−�mn lnn/ ln 4(δ + 1))|T (n)| By Lemma 5, the en-

tropy term ln |T (n)| is δα2O(n lnn), so the series converges as soon as �m >

δα2 ln(4(δ + 1)).

We can conclude to the existence of a class of equilibria:

Corollary 1 Consider a reversible process ∅ · p0 equipped with rate constants
k±a , k

±
f compatible with the V2 potential; if �m > δα2 ln(4(δ + 1)), then p0 has

an equilibrium on Ω(p0) defined as π(q) = e−V (q)/Z(p0).

Note that 1) the condition above on �m is a sufficient one, and might not
be necessary (we don’t know at the time of writing), 2) in particular, to obtain
refined effects on the equilibrium population of certain level sets, and therefore
modulate the search, it can be that one will want better results, to be more
flexible. Whether this is possible and useful remains to be seen.

� todo stroboscopic factorial sharpening; use max synch/intra-generational/breadth-
first/balanced/max parallel traces (all synonymous!) to test the lower bound
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idea III: 
energy-based programming/distributed Metropolis

code = statics/potential + transition/moves + compatible 
kinetics

actions are muted and the process bounces off the boundary) search on pre-
success states qs which live on the boundary ∂X:

argmax ξ.
�

q∈∂X p�(ξ, q) =
�
1∂X dp�

so approximable via the ergodic theorem (valid for any invariant measure? to
check) by the averages 1

n

�
1∂X(Xk), ie the empirical time of residence in a

success state.
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modeling complex systems in the life sciences

... stochastic machine learning

combinatorial dynamics

 clean and powerful mathematical/computational tools

self-organised  energy-based dynamics

causality analysis

new means of encoding info
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