rule-baSedenergy-based
WCSB, June 20II

The Kappa language

combinatorial dymamics

TDG-DNA: mismatCh recognition

TDG:DNA-Dnm+3A c to mc

memory in transient assembly!

Cousal summaries

energy I

percolation Control

Control?

$$
\lambda(p, K):=\frac{2+p+K-\sqrt{(2+p+K)^{2}-24 p(1-p)}}{2 \sqrt{3 p(1-p)}}
$$

$K=a b$ dissoc rate
$p=$ proportion of $3 b$

equilibrium/Cooperadive Case

$$
\rho(x, y)=\frac{\Gamma_{i, j}}{\left(v_{A}-i\right)\left(v_{B}-j\right)}
$$

Γ has an equilibrium iff $\Gamma=\Gamma_{A} \Gamma_{B}^{t}$ for some $\Gamma_{A} \in \mathbb{R}_{+}^{v(A)}, \Gamma_{B} \in \mathbb{R}_{+}^{v(B)}$

$$
V(x)=\sum_{u \in x} \ln \frac{\prod_{0 \leq i<o(u)} \Gamma_{\tau(u)}(i)}{\left[o(u) ; v_{\tau(u)}\right]}
$$

deterministic approx.

$$
\begin{aligned}
A_{i}^{\prime}= & -\mathbf{1}_{i<v_{A}} \sum_{0 \leq j<v_{B}} \gamma_{i, j}^{+}\left(v_{A}-i\right)\left(v_{B}-j\right) A_{i} B_{j} \\
& -\mathbf{1}_{i>0} \sum_{0<j \leq v_{B}} \gamma_{i-1, j-1}^{-} A_{i}: B_{j} \\
& +\mathbf{1}_{i>0} \sum_{0<j \leq v_{B}} \gamma_{i-1, j-1}^{+}\left(v_{A}-i+1\right)\left(v_{B}-j+1\right) A_{i-1} B_{j-1} \\
& +\mathbf{1}_{i<v_{A}} \sum_{0 \leq j<v_{B}} \gamma_{i, j}^{-} A_{i+1}: B_{j+1}
\end{aligned}
$$

$$
\begin{gathered}
A_{i}^{\prime}=\mathbf{1}_{\left\{i<v_{A}\right\}} \cdot\left(\gamma_{i}^{-}(i+1) A_{i+1}-\gamma_{i}^{+}\left(v_{A}-i\right) A_{i} n_{b}^{f}\right) \\
+\mathbf{1}_{\{i>0\}} \cdot\left(-\gamma_{i-1}^{-} i A_{i}+\gamma_{i-1}^{+}\left(v_{A}-i+1\right) A_{i-1} n_{b}^{f}\right) \\
\gamma_{i, j}^{-}=\gamma_{i}^{-} \quad \gamma_{i, j}^{+}=\gamma_{i}^{+}
\end{gathered}
$$

$$
\begin{array}{c|}
\hline \text { references: } \\
\text { Chdos 20(3)-2010 }
\end{array}
$$ PNAS 106-2009

Self-consistent / dimension-less

$$
\begin{gathered}
a_{i}=A_{i} / N, a=n_{A} / N, b=n_{B} / N, K_{i}:=\frac{\prod_{0 \leq k<i} \Gamma_{k}}{\binom{v_{A}}{i} N^{i}} \\
K_{i} \cdot a_{i}=\left(a-\sum_{0<k \leq v_{A}} a_{k}\right) \cdot\left(v_{B} b-\sum_{0 \leq k \leq v_{A}} k a_{k}\right)^{i}
\end{gathered}
$$

lan9uage Kappa/KaSim

Kasim - SndPShot

agents \& parameters

\%agent: $B(b 1, b 2)$
\%agent: A(a1,a2,a3)
\%var: 'vol' 100
\%var: 'k_on' 0.1/'vol'
\%var: 'k_off' 2
\%var: 'k_off_vee' $1 / 5$ * 'k_off'
\%var: 'k_off_tee' 1/50 * 'k_off'
\%var: 'n_A' (1000 * 'vol')
\%var: 'n_B' (1500 * 'vol')
\%init: 'n_A' (A(a1,a2,a3))
\%init: 'n_B' (B(b1,b2))

rules ...

```
'b2-a1-11' B(b2), A(a1,a2!_,a3!_) -> B(b2!0), A(a1!0,a2!_,a3!_)@ 'k_on'
'b2-a1-10' B(b2), A(a1,a2!_,a3 ) -> B(b2!0), A(a1!0,a2!_,a3 )@ 'k_on'
'b2-a1-01' B(b2), A(a1,a2 ,a3!_) -> B(b2!0), A(a1!0,a2 ,a3!_)@ 'k_on'
'b2-a1-00' B(b2), A(a1,a2 ,a3 ) -> B(b2!0), A(a1!0,a2 ,a3 )@ 'k_on'
'b2 a1-11' B(b2!0), A(a1!0,a2!_,a3!_) -> B(b2), A(a1,a2!_,a3!_)@ 'k_off_tee'
'b2 a1-10' B(b2!0), A(a1!0,a2!_,a3 ) -> B(b2), A(a1,a2!_,a3 )@ 'k_off_vee'
'b2 a1-01' B(b2!0), A(a1!0,a2 ,a3!_) -> B(b2), A(a1,a2 ,a3!_)@ 'k_off_vee'
'b2 a1-00' B(b2!0), A(a1!0,a2 ,a3 ) -> B(b2), A(a1,a2 ,a3 )@ 'k_off'
```


observables ...

```
%var: 'A0' A(a1,a2,a3)
%var: 'a1' A(a1!_,a2,a3)
%var: 'a2' A(a1,a2!_,a3)
%var: 'a3' A(a1,a2,a3!_)
%var: 'A1' 'a1' + 'a2' + 'a3'
%var: 'a1a2' A(a1!_,a2!_,a3)
%var: 'a1a3' A(a1!_,a2,a3!_)
%var: 'a2a3' A(a1,a2!_,a3!_)
%var: 'A2' 'a1a2' + 'a1a3' + 'a2a3'
%var: 'A3' A(a1!_,a2!_,a3!_)
%plot: 'AO'
%plot: 'A1'
%plot: 'A2'
%plot: 'A3'
```


KaSim - Simulations

alkenes

```
\# double bonds/alkenes [2;3] = 6
\%var: 'Ba1a2' B(b1!1,b2!2),A(a1!1,a2!2)
\%var: 'Ba2a1' B(b1!1,b2!2),A(a1!2,a2!1)
\%var: 'Ba1a3' B(b1!1,b2!2),A(a1!1,a3!2)
\%var: 'Ba3a1' B(b1!1,b2!2),A(a1!2,a3!1)
\%var: 'Ba2a3' B(b1!1,b2!2),A(a2!1,a3!2)
\%var: 'Ba3a2' B(b1!1,b2!2),A(a2!2,a3!1)
\%var: 'alkene' 'Ba1a2'+ 'Ba2a1' + 'Ba1a3' + 'Ba3a1' + 'Ba2a3' + 'Ba3a2'
\%plot: 'alkene'
```

alkenes

energy II

Stat PhYs of communicating processes

ided I: diStributed taSk = dedadlock-eScape + loCal heuristics

reversible communicating processes

$$
\begin{array}{ll}
\Theta, \Gamma \cdot(p, q) & \rightarrow^{f} \Theta, \Gamma 0 \cdot p, \Gamma 1 \cdot q \\
\Theta, \Gamma \cdot(a p+q), \Gamma^{\prime} \cdot\left(a^{\prime} p^{\prime}+q^{\prime}\right) \rightarrow^{s} \Theta, \Gamma\left(a, \Gamma^{\prime}, q\right) \cdot p, \Gamma^{\prime}\left(a^{\prime}, \Gamma, q^{\prime}\right) \cdot p^{\prime}
\end{array}
$$

ideld II:
 exhdustive SearCh/Probabbilistic equililbrium = must succeed + almost surely finite time

probabilistic reversible communicating processes

$$
\begin{array}{ll}
\Theta, \Gamma \cdot(p, q) & \rightarrow^{f} \Theta, \Gamma 0 \cdot p, \Gamma 1 \cdot q \\
\Theta, \Gamma \cdot(a p+q), \Gamma^{\prime} \cdot\left(a^{\prime} p^{\prime}+q^{\prime}\right) & \rightarrow^{s} \Theta, \Gamma\left(a, \Gamma^{\prime}, q\right) \cdot p, \Gamma^{\prime}\left(a^{\prime}, \Gamma, q^{\prime}\right) \cdot p^{\prime} \\
\rho(x, y)=\frac{k_{a}^{\star}}{k_{a}} \cdot \frac{1}{\mu(a p)} \cdot \frac{1}{\mu\left(a^{\prime} p^{\prime}\right)}
\end{array}
$$

probabilistic equilibrium (ctmc) = detailed balancerthermo consistency+ Convergence

$$
\begin{aligned}
& p(x)=\frac{e^{-V(x)}}{\sum_{y} e^{-V(y)}} \\
& \text { akd grand Canonical ensemble }
\end{aligned}
$$

explosive growthS

$$
\begin{array}{rlrl}
q & \rightarrow^{f} 0 \cdot p(a), 1 \cdot p(\bar{a}) & 1,1 & 1 \\
& \rightarrow{ }^{f s} 0 a 0 \cdot p(a), 0 a 1 \cdot p(a), 1 \bar{a} 0 \cdot p(\bar{a}), 1 \bar{a} 1 \cdot p(\bar{a}) & 2,2 & 2 \\
& =\quad 0 a 0 \cdot a(p(a), p(a)), 0 a 1 \cdot a(p(a), p(a)), & \\
& \quad 1 \bar{a} 0 \cdot \bar{a}(p(\bar{a}), p(\bar{a})), 1 \bar{a} 1 \cdot \bar{a}(p(\bar{a}), p(\bar{a})) & 4! \\
& \rightarrow^{f s} 0 a 0 a 0 \cdot p(a), 0 a 0 a 1 \cdot p(a), 0 a 1 a 0 \cdot p(a), 0 a 1 a 1 \cdot p(a), 4,4 & \\
& 1 \bar{a} 0 \bar{a} 0 \cdot p(\bar{a}), 1 \bar{a} 0 \bar{a} 1 \cdot p(\bar{a}), 1 \bar{a} 1 \bar{a} 0 \cdot p(\bar{a}), 1 \bar{a} 1 \bar{a} 1 \cdot p(\bar{a}) & \\
& \rightarrow^{f s} \prod_{w \in 2^{k}} 0 w(a) \cdot p(a), \prod_{w \in 2^{k}} 1 w(\bar{a}) \cdot p(\bar{a}) & 2^{k}, 2^{k} & 2^{k}!
\end{array}
$$

a "Concurrent" potential:

$$
V_{2}(p)=\sum_{\theta \in p, \mathbf{a} \in \mathcal{A} \leq \alpha}\left\langle\xi_{\mathbf{a}}, \mathrm{nb} \text { of } \mathbf{a} \text { in the stack of } \theta\right\rangle
$$

forkenergy balance

$$
\begin{aligned}
& \Theta, \Gamma \cdot(p, q) \rightarrow^{f} \Theta, \Gamma 0 \cdot p, \Gamma 1 \cdot q \\
& \Delta V_{1}=V_{1}(\Gamma)+\eta=\ln \left(k^{\star} / k\right)
\end{aligned}
$$

$$
k=\exp \left(-\eta-V_{1}(\Gamma)\right)
$$

synch

$\Theta, \Gamma \cdot(a p+q), \Gamma^{\prime} \cdot\left(a^{\prime} p^{\prime}+q^{\prime}\right) \rightarrow^{s} \Theta, \Gamma\left(a, \Gamma^{\prime}, q\right) \cdot p, \Gamma^{\prime}\left(a^{\prime}, \Gamma, q^{\prime}\right) \cdot p^{\prime}$

$$
\begin{gathered}
\Delta V_{1}=\epsilon_{a} \\
k_{a}=\exp \left(-\epsilon_{a}\right)
\end{gathered}
$$

Sufficient Condition for Cquilibrium

Proposition 1 Let p_{0} be a α-way synchronising process with max thread creation $\leq 1+\delta$ with $\delta>0$, and suppose $\epsilon_{m}:=\min \epsilon_{\boldsymbol{a}}>\delta \alpha^{2} \ln (4(\delta+1))$, then:

$$
Z\left(p_{0}\right):=\sum_{q \in \Omega\left(p_{0}\right)} e^{-V(q)}<+\infty
$$

where $\Omega\left(p_{0}\right)$ is the set of processes reachable from $\varnothing \cdot p_{0}$.

Corollary 1 Consider a reversible process $\varnothing \cdot p_{0}$ equipped with rate constants $k_{a}^{ \pm}, k_{f}^{ \pm}$compatible with the V_{2} potential; if $\epsilon_{m}>\delta \alpha^{2} \ln (4(\delta+1))$, then p_{0} has an equilibrium on $\Omega\left(p_{0}\right)$ defined as $\pi(q)=e^{-V(q)} / Z\left(p_{0}\right)$.

ided III:
 energy-baSed programming/distributed Metropolis code = statics/potential + transition/moves + compatible kinetics

$$
\operatorname{argmax} \xi \cdot \sum_{q \in \partial X} p^{\star}(\xi, q)=\int \mathbf{1}_{\partial X} d p^{\star}
$$

modeling complex systems in the life sciences

clean and powerful mathematical/Computational tools

Combinatorial dymamics

Cousdity andYsis

new means of encoding info

self-organised energy-based dymamics
... Stochastic machine learning

kappalanguage ory - tools

rulubase.org on-ine playabl models

cosimo Laneve (Bologna)

Jean Krivine, Jerome feret (Paris, cNRS, ENS)
Walter Fontand, RusS Harmer (Harvard)
Heinz Kopppl group ETH

Nicolas Oury
 Elaine MurphY, JR wilSon-Kanamori, DOnal SteWart
 Giorgio BaCCi

Ohad Kammar
... thanks to P. SWain, Andra WeisSe, Julien Ollivier \& Gordon PLotkin

