rule-based/energy-based

WCSB, June 2011

Monday, 6 June 2011

TDG-DNA: MISMAtch recognition

TDG: DNA-DNMT3A (to MC

Causal summaries

energy I

percolation control

equilibrium/cooperative case

$$\rho(x,y) = \frac{\Gamma_{i,j}}{(v_A - i)(v_B - j)}$$

$$\Gamma$$
 has an equilibrium iff $\Gamma = \Gamma_A \Gamma_B^t$ for some $\Gamma_A \in \mathbb{R}^{v(A)}_+, \ \Gamma_B \in \mathbb{R}^{v(B)}_+$

$$V(x) = \sum_{u \in x} \ln \frac{\prod_{0 \leq i < o(u)} \Gamma_{\tau(u)}(i)}{[o(u); v_{\tau(u)}]}$$

acterministic approx.

$$\begin{aligned} A'_{i} &= -\mathbf{1}_{i < v_{A}} \sum_{0 \le j < v_{B}} \gamma^{+}_{i,j} (v_{A} - i) (v_{B} - j) A_{i} B_{j} \\ &- \mathbf{1}_{i > 0} \sum_{0 < j \le v_{B}} \gamma^{-}_{i-1,j-1} A_{i} : B_{j} \\ &+ \mathbf{1}_{i > 0} \sum_{0 < j \le v_{B}} \gamma^{+}_{i-1,j-1} (v_{A} - i + 1) (v_{B} - j + 1) A_{i-1} B_{j-1} \\ &+ \mathbf{1}_{i < v_{A}} \sum_{0 \le j < v_{B}} \gamma^{-}_{i,j} A_{i+1} : B_{j+1} \end{aligned}$$

$$A'_{i} = \mathbf{1}_{\{i < v_{A}\}} \cdot (\gamma_{i}^{-}(i+1)A_{i+1} - \gamma_{i}^{+}(v_{A} - i)A_{i}n_{b}^{f}) + \mathbf{1}_{\{i > 0\}} \cdot (-\gamma_{i-1}^{-}iA_{i} + \gamma_{i-1}^{+}(v_{A} - i + 1)A_{i-1}n_{b}^{f})$$

$$\gamma_{i,j}^- = \gamma_i^- \qquad \gamma_{i,j}^+ = \gamma_i^+$$

self-consistent / aimension-less

$$a_i = A_i/N, \ a = n_A/N, \ b = n_B/N, \ K_i := \frac{\prod_{0 \le k < i} \Gamma_k}{\binom{v_A}{i} N^i}$$

$$K_i \cdot a_i = (a - \sum_{0 \le k \le v_A} a_k) \cdot (v_B b - \sum_{0 \le k \le v_A} k a_k)^i$$

language Kappa/KaSim

agents & parameters

```
%agent: B(b1,b2)
%agent: A(a1,a2,a3)
%var: 'vol' 100
%var: 'k_on' 0.1/'vol'
%var: 'k_off' 2
%var: 'k_off_vee' 1/5 * 'k_off'
%var: 'k_off_tee' 1/50 * 'k_off'
%var: 'n_A' (1000 * 'vol')
%var: 'n_B' (1500 * 'vol')
%init: 'n_A' (A(a1,a2,a3))
%init: 'n_B' (B(b1,b2))
```

rules

'b2-a1-11' B(b2), A(a1,a2!_,a3!_) -> B(b2!0), A(a1!0,a2!_,a3!_)@ 'k_on' 'b2-a1-10' B(b2), A(a1,a2!_,a3) -> B(b2!0), A(a1!0,a2!_,a3)@ 'k_on' 'b2-a1-01' B(b2), A(a1,a2 ,a3!_) -> B(b2!0), A(a1!0,a2 ,a3!_)@ 'k_on' 'b2-a1-00' B(b2), A(a1,a2 ,a3) -> B(b2!0), A(a1!0,a2 ,a3)@ 'k_on'

'b2 a1-11' B(b2!0), A(a1!0,a2!_,a3!_) -> B(b2), A(a1,a2!_,a3!_)@ 'k_off_tee'
'b2 a1-10' B(b2!0), A(a1!0,a2!_,a3) -> B(b2), A(a1,a2!_,a3)@ 'k_off_vee'
'b2 a1-01' B(b2!0), A(a1!0,a2 ,a3!_) -> B(b2), A(a1,a2 ,a3!_)@ 'k_off_vee'
'b2 a1-00' B(b2!0), A(a1!0,a2 ,a3) -> B(b2), A(a1,a2 ,a3)@ 'k_off'

observables ...

```
%var: 'A0' A(a1,a2,a3)
```

%var: 'a1' A(a1!_,a2,a3)
%var: 'a2' A(a1,a2!_,a3)
%var: 'a3' A(a1,a2,a3!_)

%var: 'A1' 'a1' + 'a2' + 'a3'

%var: 'a1a2' A(a1!_,a2!_,a3)
%var: 'a1a3' A(a1!_,a2,a3!_)
%var: 'a2a3' A(a1,a2!_,a3!_)

%var: 'A2' 'a1a2' + 'a1a3' + 'a2a3'

%var: 'A3' A(a1!_,a2!_,a3!_)

%plot: 'A0'
%plot: 'A1'
%plot: 'A2'
%plot: 'A3'

29/0/2011 percoop

Time

Monday, 6 June 2011

Number

alkenes

```
# double bonds/alkenes [2;3] = 6
%var: 'Ba1a2' B(b1!1,b2!2),A(a1!1,a2!2)
%var: 'Ba2a1' B(b1!1,b2!2),A(a1!2,a2!1)
%var: 'Ba1a3' B(b1!1,b2!2),A(a1!1,a3!2)
%var: 'Ba3a1' B(b1!1,b2!2),A(a1!2,a3!1)
%var: 'Ba2a3' B(b1!1,b2!2),A(a2!1,a3!2)
%var: 'Ba3a2' B(b1!1,b2!2),A(a2!2,a3!1)
```

%var: 'alkene' 'Ba1a2'+ 'Ba2a1' + 'Ba1a3' + 'Ba3a1' + 'Ba2a3' + 'Ba3a2'

%plot: 'alkene'

energy II

stat phys of communicating processes

reversible communicating processes

 $\begin{array}{ll} \Theta, \Gamma \cdot (p,q) & \to^{f} \Theta, \Gamma 0 \cdot p, \Gamma 1 \cdot q \\ \Theta, \Gamma \cdot (ap+q), \Gamma' \cdot (a'p'+q') \to^{s} \Theta, \Gamma (a,\Gamma',q) \cdot p, \Gamma' (a',\Gamma,q') \cdot p' \end{array}$

idea II: exhaustive search/probabilistic equilibrium = must succeed + almost surely finite time

probabilistic reversible communicating processes

$$\begin{array}{ll} \Theta, \Gamma \cdot (p,q) & \to^{f} \Theta, \Gamma 0 \cdot p, \Gamma 1 \cdot q \\ \Theta, \Gamma \cdot (ap+q), \Gamma' \cdot (a'p'+q') \to^{s} \Theta, \Gamma (a,\Gamma',q) \cdot p, \Gamma' (a',\Gamma,q') \cdot p' \end{array}$$

$$\rho(x,y) = \frac{k_a^{\star}}{k_a} \cdot \frac{1}{\mu(ap)} \cdot \frac{1}{\mu(a'p')}$$

probabilistic equilibrium (ctmc) = detailed balance/thermo consistency+ convergence

$$p(x) = \frac{e^{-V(x)}}{\sum_{y} e^{-V(y)}}$$

aka grand canonical ensemble

explosive growths

event horizon nb of complete matchings

$q \rightarrow^f$	$0 \cdot p(a), 1 \cdot p(\bar{a})$	1,1	1
\rightarrow^{fs}	$0a0 \cdot p(a), 0a1 \cdot p(a), 1\overline{a}0 \cdot p(\overline{a}), 1\overline{a}1 \cdot p(\overline{a})$	2,2	2
=	$0a0 \cdot a(p(a), p(a)), 0a1 \cdot a(p(a), p(a)),$		
	$1\bar{a}0\cdot\bar{a}(p(\bar{a}),p(\bar{a})),1\bar{a}1\cdot\bar{a}(p(\bar{a}),p(\bar{a}))$		
\rightarrow^{fs}	$0a0a0 \cdot p(a), 0a0a1 \cdot p(a), 0a1a0 \cdot p(a), 0a1a1 \cdot p(a)$), 4, 4	4!
	$1\bar{a}0\bar{a}0 \cdot p(\bar{a}), 1\bar{a}0\bar{a}1 \cdot p(\bar{a}), 1\bar{a}1\bar{a}0 \cdot p(\bar{a}), 1\bar{a}1\bar{a}1 \cdot p(\bar{a}), 1\bar{a}1 \cdot p(\bar{a}$)	
•••			
\rightarrow^{fs}	$\prod_{w \in 2^k} 0w(a) \cdot p(a), \prod_{w \in 2^k} 1w(\bar{a}) \cdot p(\bar{a})$	$2^k, 2^k$	$2^{k}!$

is there a "concurrent" potential that controls the above?

a "concurrent" potential:

 $V_2(p) = \sum_{\alpha \in A} \langle \xi_{\mathbf{a}}, \text{nb of } \mathbf{a} \text{ in the stack of } \theta \rangle$ $\theta \in p, \mathbf{a} \in \mathcal{A}^{\leq \alpha}$

fork/energy balance

$$\Theta, \Gamma \cdot (p, q) \to^{f} \Theta, \Gamma 0 \cdot p, \Gamma 1 \cdot q$$
$$\Delta V_{1} = V_{1}(\Gamma) + \eta = \ln(k^{\star}/k)$$

$$k = \exp(-\eta - V_1(\Gamma))$$

SYNCh

 $\Theta, \Gamma \cdot (ap+q), \Gamma' \cdot (a'p'+q') \to^{s} \Theta, \Gamma(a, \Gamma', q) \cdot p, \Gamma'(a', \Gamma, q') \cdot p'$

$$\Delta V_1 = \epsilon_a$$

$$k_a = \exp(-\epsilon_a)$$

Sufficient condition for equilibrium

Proposition 1 Let p_0 be a α -way synchronising process with max thread creation $\leq 1 + \delta$ with $\delta > 0$, and suppose $\epsilon_m := \min \epsilon_a > \delta \alpha^2 \ln(4(\delta + 1))$, then:

$$Z(p_0) := \sum_{q \in \Omega(p_0)} e^{-V(q)} < +\infty$$

where $\Omega(p_0)$ is the set of processes reachable from $\emptyset \cdot p_0$.

Corollary 1 Consider a reversible process $\emptyset \cdot p_0$ equipped with rate constants k_a^{\pm} , k_f^{\pm} compatible with the V_2 potential; if $\epsilon_m > \delta \alpha^2 \ln(4(\delta + 1))$, then p_0 has an equilibrium on $\Omega(p_0)$ defined as $\pi(q) = e^{-V(q)}/Z(p_0)$.

idea III:

energy-based programming/distributed metropolis Code = statics/potential + transition/moves + compatible kinetics

argmax ξ . $\sum_{q \in \partial X} p^*(\xi, q) = \int \mathbf{1}_{\partial X} dp^*$

machine learning

modeling complex systems in the life sciences

clean and powerful mathematical/computational tools

combinatorial aynamics

causality analysis

new means of encoding info

self-organised energy-based dynamics

... Stochastic Machine learning

kappalanguage.org - tools

rulebase.org on-line playable models

cosimo Laneve (Bologna)

Jean Krivine, Jerome Feret (Paris, (NRS, ENS)

Walter Fontana, Russ Harmer (Harvard)

heinz Koeppl Group eth

... thanks to P. Swain, Andra Weisse, Julien Ollivier & Gordon Plotkin