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Outline

• Stochastic processes, description levels
• (Chemical) master equation (CME)
• Gillespie algorithm

• Link with Mass Action law  (macroscopic laws)
• Deviant effects
• Large fluctuations
• Gene expression : multistep reactions



Orders of magnitude

• (Avogadro number :  NA = 6,02 1023 )

• A typical E coli cell contains about 105 copies of abundant 
proteins, and on the order of 10 copies of scarce ones

• Number of water molecules in a small cell ~ 108-109 

• Molecular dynamics (with explicit solvent) : position and 
velocity of each atom

    Ex : assembly of viral capsid. 1 million atoms, time
    Simulated: 50.10-9 s



  

Probabilities and stochastic 
processes in physics

• "Experience has taught us that in spite of our ignorance 
of most of the microscopic variables it is still possible to 
detect regularities in the macroscopic behavior and 
formulate them in general laws"   van Kampen

• Several possible description levels
• Not a property of the observer but of the system itself

Sources of stochasticity :
• Uncertainty of initial state, deterministic chaos
• Elimination of variables  ('noise')
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From mechanics to statistical 
physics

• Dynamical quantities
    Deterministic evolution

• Dynamical instability    Statistical stability

• Reversibility  (t/-t)    Irreversibility

Statistical quantities,
non-deterministic evolution,
Mesoscopic or macroscopic 
state



Stochastic processes

• Given a probability space (Ω, E, P), and a state space X, 
a stochastic process φ is a function Ω × ℝ → X such 
that: 

    For each t ∈ Ω , ϕ(t): Ω → X is a random variable

• To each event ω ∈ Ω  is associated a trajectory ϕω(t)

• Hierarchy of distribution functions Pn :
P1(x,t) = probability density that φ has the value x at 
time t.
Pn(x1,t1; x2,t2; …; xn,tn) = joint probability density that 
φ(t) has the value x1 at time t1 and x2 at time t2 and ...



Conditional probability

• P1|1(x2,t2|x1,t1) is the probability density for ϕ to take 
value x2 at t2, given that its value at t1 is x1.

• P2(x1,t1; x2,t2) = P1|1(x2,t2 | x1,t1) . P1(x1,t1)
• ...



  

Markov process

Stochastic process with the property that for any set of 
successive times t1 < t2 < … < tn :

    P1| n-1 (xn,tn | x1,t1; ...; xn-1,tn-1) = P1|1(xn,tn | xn-1,tn-1)

• P1|1(x2,t2 | x1,t1) : transition probability 

We deduce :
• P2(x1,t1; x2,t2) = P1(x1,t1) . P1|1(x2,t2 | x1,t1)
• P3(x1,t1; x2,t2; x3,t3) = P1(x1,t1).P1|1(x2,t2 | x1,t1).P1|1(x3,t3 | x2,t2)
• …
A Markov process is fully determined by P1 and P1|1.



Brownian motion (Brown, 1827)

Jean Perrin's observations



Brownian motion

• What is observed is the net displacement resulting after 
many variations of the velocity

• The position and the velocity are Markov processes

• The Markov property holds approximately :
xk-xk-1 large → large velocity at tk → xk+1-xk large
Auto-correlation time of velocity > 0  ⇒  correlation 
between successive displacements
Ordered flow around the particle → memory

• The same physical system can be associated with several 
Markov processes.

            AB → A + B :    concentration, vibrations of AB



Markov processes

• With respect to which set of variables is the system 
Markovian ?

• The microscopic motion in phase space is deterministic 
and therefore Markovian.

• Integrating out variables → sub-process not Markovian 
in general

• Problem : find a much smaller set of variables (defining 
a 'meso- or macro-scopic state') whose behavior in time 
can be described as a Markov process.



  

Reactions (kinetic theory)

• Thermal motion (kBT)

• Collision between 2 molecules :
• 'Efficient' collision →  reaction
• 'Inefficient' collision →  no reaction  (elastic collision)

• The reactional event is very short (10-10 s)
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Master equation

• For homogeneous Markov processes : P1|1 depends only 
on τ = t2–t1 :  P1|1(x2,t2 | x1,t1) = T

τ
(x2|x1)

• More manageable than Chapman-Kolmogorov eq

• For a discrete state space :

              dpi/dt  =  Σk [Wki.pk(t) – Wik.pi(t)]
    pi(t) is the probability of state i (given an initial state),
    Wik is the transition probability i → j per unit time.
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Master equation (2)

• The ME is a huge system of differential equations !
• It is a linear system
• It is generally stiff (several time scales)
• The matrix is sparse

Two options :
• Solve the ME.

• Model reduction. Slow manifold (Roussel & Zhu)
• Stochastic simulations
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Chemical master equation

• M reaction channels Rj 
• Well-stirred medium
• Discrete state space : numbers Xi of molecules (state X(t))

Each reaction channel Rj is characterized by 2 quantities :

• State-change vector vj = (v1j, …, vNj). One Rj reaction 
causes a change of state x to x + vj.

• Propensity function aj(x) :

    aj(x)dt  ≡  probability, given X(t) = x, that one Rj reaction
    will occur in the next time interval [t, t+dt[.
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Chemical master equation

P(x,t | x0,t0) ≡ Prob{X(t)=x, given X(t0)=x0}

∂P(x,t | x0,t0)/∂t  =

           Σ [aj(x-vj).P(x-vj, t | x0,t0) - aj(x).P(x,t | x0,t0)]

Equation for average state :

d<X(t)>/dt  =  Σ  vj  <aj(x)>t  

M

j=1
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Simple example

Degradation :

•     S → ∅     (c)

a(x) = cx

∂P(x,t | x0,0)/∂t  = a(x+1) P(x+1,t | x0,0) - a(x) P(x,t | x0,0)

Can be solved exactly  (because P(x0+1,t | x0,0) = 0)



Gillespie algorithm

• Simulate the stochastic time evolution

• Most collisions are elastic → at each t the medium is well-
stirred

• p(τ,j | x,t) dτ ≡ probability, given X(t) = x, that the next 
reaction in the system wil occur in the infinitesimal interval 
[t+τ, t+τ+dτ[ and will be an Rj reaction.

• p(τ,j | x,t)  = aj(x) exp(-a0(x)τ)

        with  a0(x) ≡ Σ ak(x)  
M



  



  

Example : Lotka-Volterra

Lotka, 1920 : autocatalytic reaction system

X + Y1 → 2 Y1 (c1)
Y1 + Y2 → 2Y2 (c2)
Y2 → Z (c3)

dY1/dt = c1 X Y1  -  c2 Y1 Y2 
dY2/dt = c2 Y1 Y2  -  c3 Y2 



  



  



  

Approximation schemes

Tau-leaping : fixed time τ, several reactive events

Stiff systems :
• Slow-scale SSA
• Hybrid simulations
• ...



  

From stochastic to deterministic 
(macroscopic/dissipative)

• Kubo et al, J Stat Phys, 1973 ; Kitahara, 1973

• Eikonal approx of CME  (expansion in 1/Ω).

• Replace into Chemical ME;  continuous x
    → Hamilton-Jacobi equation for the action s(x,t) 

• The trajectory of the mode  (∇s(x,t)=0)  is solution of an 
ODE corresponding to mass-action law

• Linear systems : mode ∼ average

P(x,t) = C  exp(-Ω (s(x,t) + O(1/Ω)))



  

Average of distribution and 
mode(s)



  

Classification of deviant effects

(Samoilov & Arkin, nature biotech, 2006)

Approximations :
• Type I : Full state probability distribution is approximated 

by its leading exponent  (eikonal approx)
• Type II : Characteristic system features occur on scales much 

greater than a molecule: Discrete molecular states are 
approximated by continuous concentrations

• Type III : The evolution of the state distribution is replaced by that 
of its mode



  

Type I

    X + X → Y + Y      (k1)

    X + Y → X + X      (k2)

Mass-action law :
• Two stationary states :
    xss1 = 0  (unstable)

    Xss2 = xTk2 / (k2+2k1)  (stable)

• CME analysis 



  

Type II

S + E  ⇔  C  →  P + E
E + E → (...)



  

Type III



  

Large fluctuations out of 
equilibrium

• Large and rare, but effect may be important ; trigger 
change of attractor

• Luchinsky & McClintock, nature, 1997

• Large fluctuations
    → Tail of distribution (exponentially decreasing)
• Probability of transition to other attractor is not zero



  

Large fluctuations out of 
equilibrium

Two kinds of random motions :
• Fluctuational (away from SS)
• Relaxational (back to SS)

Optimal path to point far from 
average state

Heterogeneity of cell populations 
(genetically identical cells)



  

Other approaches

• (chemical and reaction-diffusion) Master eqs → 
second quantization, operator algebra techniques

• Renormalization group
    Fluctuations on several scales  (multiscale analysis)



  

Multistep reactions

(Pedraza & Paulsson, Science, 2008)

• Complex control of gene expression : several 
repressors, transc factors and mediators, 
chromatin remodelling → non-exponential time 
intervals between transcription windows

• RNA gestation and senescence



  

Bursting



  

Molecular senescence



  



Summary

• Stochasticity results from a choice of description level. 
It's a property of the system, not of the observer.

• The Markov property is always an approximation for a 
physical system.

• The macroscopic MA law describe the evolution of the 
mode(s) rather than the average.

• Deviant effects can occur at large numbers of molecules
• Proba of large fluctuations; auxiliary hamiltonian system
• Multistep reactions (transcription, ...) → reduction of 

noise
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