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Gene regulatory networks

 The adaptation of bacteria to changes 

in their environment involves 

adjustment of gene expression levels

Differences in expression of enzymes in 

central metabolism of E. coli during growth

on glucose or acetate

Gene regulatory networks control 

changes in expression levels in 

response to environmental

perturbations

Oh et al. (2002), J. Biol. Chem., 277(15):13175–83



Gene regulatory networks

 Gene regulatory networks consist of genes, gene products 

(RNAs, proteins), and the regulatory effect of the latter on the 

expression of other genes
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Bolouri (2008), Computational Modeling of Gene 

Regulatory Networks, Imperial College Press

Brazhnik et al. (2002), Trends Biotechnol., 20(11):467-72

 Gene regulatory networks 

cannot be reduced to direct

interactions (transcription 

regulation), but also include 

indirect interactions (mediated 

by metabolism)



Problem statement

 Occurrence of indirect regulatory interactions between enzymes 

and genes: metabolic coupling

 By which method can we analyze metabolic coupling in gene 

regulatory networks in a principled way?

How can we derive indirect interactions from underlying system of 

biochemical reactions?

 Practical constraints

 Large systems (many species, many reactions)

 Lack of information on specific reaction mechanisms

 Lack of parameter values, lack of data to estimate parameter values

5



Problem statement

Which new insights does this method give us into the 

functioning of the carbon assimilation network in E. coli?

Upper part of glycolysis and gluconeogenesis pathways and their genetic 

and metabolic regulation 

6



Outline of approach

 By which method can we analyze metabolic coupling in gene 

regulatory networks in a principled way?

How can we derive indirect interactions from underlying system of 

biochemical reactions?

 Approach based on reduction of stoichiometric model of system 

of biochemical reactions, making following weak assumptions:

 Distinct time-scale hierarchies between metabolism and gene 

expression: model reduction using quasi-steady-state approximation

 Stability of fast subsystem: use of control coefficients from metabolic 

control theory
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Baldazzi et al. (2010), PLoS Comput. Biol., 6(6):e1000812



Kinetic models and time-scale hierarchy

 Kinetic model of form

 Concentration variables

 Reaction rates                            

 Stoichiometry matrix
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Simplified model of glycolysis pathway, with 

metabolic and genetic regulation

Heinrich and Schuster (1996), 

The Regulation of Cellular Systems, Chapman & Hall

·

·

·



Kinetic models and time-scale hierarchy

 Kinetic model of form

 Concentration variables

 Reaction rates                            

 Stoichiometry matrix

 Time-scale hierarchy motivates distinction between fast

reaction rates                    and slow reaction rates              , 

such that

Typically, enzymatic and complex formation reactions are fast, protein 

synthesis and degradation are slow

9



Kinetic models and time-scale hierarchy

 Separation of fast and slow reactions motivates a linear 

transformation                        of the variables

such that

We call                 slow variables and                      fast 

variables

Slow variables are typically total protein concentrations, fast variables 

metabolites and biochemical complexes

10



Kinetic models and time-scale hierarchy

 Separation of fast and slow reactions motivates a linear 

transformation                        of the variables

such that

We call                 slow variables and                      fast 

variables

 Separation of fast and slow variables allows                      to be 

rewritten as coupled slow and fast subsystems

11



Kinetic models and time-scale hierarchy

 Reduction of simplified kinetic model of glycolysis using time-

scale separation

12



Model reduction using time-scale hierarchy

 Separation of fast and slow variables allows original model to 

be rewritten as coupled slow and fast subsystems

 Under quasi-steady-state approximation (QSSA), fast 

variables are assumed to instantly adapt to slow dynamics

Mathematical basis for QSSA is given by Tikhonov’s theorem

13



Heinrich and Schuster (1996), The Regulation of Cellular Systems, Chapman & Hall

Khalil (2001), Nonlinear Systems, Prentice Hall, 3rd ed.



Model reduction using time-scale hierarchy

 QSSA implicitly relates steady-state value of fast variables to 

slow variables

 This gives reduced model on the slow time-scale

Reduced model describes direct and indirect interactions between slow 

variables (total protein concentrations)

Mathematical representation of effective gene regulatory network

 But

 Generally function      is not easy to obtain due to nonlinearities

 Function      depends on unknown parameter values

14



Jacobian matrix and regulatory structure

 Derivation of interaction structure between slow variables 

by computation of Jacobian matrix

 Implicit differentiation of                                 yields

where                                                      is Jacobian matrix of fast system

15

Direct regulation by 

transcription factors
Indirect regulation through 

metabolic coupling



Jacobian matrix and regulatory structure

 Relation between obtained expression for Jacobian matrix and 

Metabolic Control Analysis (MCA) 

 Concentration control coefficients characterize the steady-

state response of metabolic subsystem to changes in slow 

variables (enzyme concentrations)

 Concentration control coefficients are expressed in terms of 

elasticity coefficients, which quantify the changes in reaction 

rates to perturbations in slow variables

16

Concentration control coefficients

Heinrich and Schuster (1996), The Regulation of Cellular Systems, Chapman & Hall



 Can we derive signs for regulatory interactions (elements of 

Jacobian matrix), without knowledge on rate laws and 

parameter values?

 Idea: exploit link with MCA, notably that signs of elasticities 

are known

Rate laws are generally monotone functions in variables

Determination of interaction signs

17



Determination of interaction signs

 Can we derive signs for regulatory interactions (elements of 

Jacobian matrix), without knowledge on rate laws and 

parameter values? 

 Idea: exploit link with MCA, notably that signs of elasticities 

are known

Rate laws are generally monotone functions in variables 

 But

 Reversible reactions: signs of                           change with flux direction

 Therefore, derive signs of regulatory interaction for given flux directions

18



Determination of interaction signs

 Resolution of signs of (large) algebraic expressions defining 

interaction signs by means of computer algebra tools

Symbolic Math Toolbox in Matlab

 Use of additional constraints in sign resolution

 Stability assumption for fast system: necessary condition for stability 

is that coefficients of characteristic polynomial                             have 

same sign

 Experimental determination of some of the signs of concentration 

control coefficients in                (if available)

19



Determination of interaction signs

 Derivation of interaction signs from simplified kinetic model of 

glycolysis

 Enzymes influence expression of metabolic genes through metabolism 

(metabolic coupling)

 Intuitive explation of metabolic coupling in this simple example
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Application to E. coli carbon assimilation

 Development of model of carbon assimilation network, analysis 

under following conditions:

Glycolysis/gluconeogenesis (growth on glucose/pyruvate)

21

66 reactions and 40 species



Application to E. coli carbon assimilation

 Development of model of carbon assimilation network, analysis 

under following conditions:

Glycolysis/gluconeogenesis (growth on glucose/pyruvate)

 Few fast variables couple metabolism to gene expression

22

Glycolysis with allosteric effects



Network is densely connected

 Contrary to what is often maintained, gene regulatory network 

is found to be densely connected

 Strong connectivity arises from metabolic coupling

 : transcriptional network consisting of direct interactions only

 : gene regulatory network in glycolytic growth conditions 

including direct and indirect interactions

 Experimental evidence for indirect interactions in perturbation 

experiments (deletion mutants, enzyme overexpression)

23

Siddiquee et al. (2004), FEMS Microbiol. Lett., 235:25–33

Baptist et al., submitted



Network is largely sign-determined

 Derived gene regulatory network for carbon assimilation in E. 

coli is largely sign-determined

Signs of interactions do not depend on explicit specification of kinetic 

rate laws or parameter values, but are structural property of system

 Sign-determinedness not expected on basis of work in ecology

Sufficient conditions for sign-determinedness can be formulated using 

expression for 

24

Glycolysis with allosteric effects

Baldazzi et al. (2010), PLoS Comput. Biol., 6(6):e1000812



Interaction signs change with fluxes

 Radical changes in environment may invert signs of indirect 

interactions, because they change direction of metabolic 

fluxes and thus signs of elasticities

 Dynamic modification of feedback structure in response to 

environmental perturbations

25

Network under glycolytic conditions Network under gluconeogenic conditions



Metabolic coupling and network dynamics

Metabolic coupling changes network structure, but how does it 

affect network dynamics?

 First approach: reduce integrated network to gene regulatory 

network with metabolic coupling

 Description of effective network structure on time-scale of gene 

expression

 Use of standard (qualitative or quantitative) models for describing direct 

and indirect interactions between genes

26
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Qualitative modeling of network dynamics

 Qualitative models capture in simple manner complex dynamic 

of large regulatory networks without quantitative data

Interesting in their own right, or first step towards fully quantitative modeling

 Approach based on description of network dynamics by means

of piecewise-affine (PA) DE models

PA models describe dynamics of gene regulatory networks by means of 

approximate, switch-like response functions

 Relation with discrete, logical models of gene regulation

Thomas and d’Ari (1990), Biological Feedback, CRC Press

Glass and Kauffman (1973), J. Theor. Biol., 39(1):103-29
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Qualitative analysis of PA models

PA models using step functions

de Jong et al. (2004), Bull. Math. Biol., 66(2):301-40

Batt et al. (2005), Bioinformatics, 21(supp. 1): i19-i28 

xa  a s-(xa , a2) s
-(xb , b ) – a xa

.

xb  b s-(xa , a1) – b xb 

.

Models easy to analyze, using inequalities

a1
0

maxb

a2

b

maxa

b/b
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Predictions of qualitative dynamics, robust

for large variations in parameter values
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Formulation of PA models

 Can PA models account for adaptations of gene expression in 

E. coli when bacteria following glucose-acetate diauxie?

 Translation of network diagram into PA models

29

Baldazzi et al., submitted



Formulation of PA models

 Can PA models account for adaptations of gene expression in 

E. coli when bacteria following glucose-acetate diauxie?

 Translation of network diagram into PA models

 Straightforward for direct interactions…

 … but also possible for indirect interactions

30

Baldazzi et al., submitted



Dynamic analysis of metabolic coupling

 Can PA models account for adaptations of gene expression in 

E. coli when bacteria following glucose-acetate diauxie?

 Comparison of model predictions with published data sets: 

indirect interactions induced by metabolic coupling are 

essential for reproducing gene expression dynamics

Steady-state mRNA concentration levels and initial transcriptional 

response of metabolic and regulatory genes

31

Baldazzi et al., submitted



Metabolic coupling and network dynamics

Metabolic coupling changes network structure, but how does it 

affect network dynamics?

 Second approach: explicit modeling of metabolism using 

kinetic rate laws

 Excellent examples available in literature

 But … rate laws are nonlinear, so no analytic expression for   , and ...

 Obtaining reliable parameter values from data is currently bottleneck

32



Kotte et al. (2010), Mol. Syst. Biol., 6: 355

Bettenbrock (2005), J. Biol. Chem., 281(5):2578-84



Metabolic coupling and network dynamics

Metabolic coupling changes network structure, but how does it 

affect network dynamics?

Modified second approach: explicit modeling of metabolism 

using approximate kinetic rate laws

 Approximate models that provide good phenomenological description of 

enzymatic rate laws: linlog kinetics

 Estimation of parameter values in presence of noisy and missing data: 

expectation-maximization (EM) algorithm

 Some preliminary results…

33



Berthoumieux et al. (2011), Bioinformatics, in press
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Linlog models

 Linlog models approximate classical enzymatic rate laws:

• Internal and external metabolite concentrations               ,

• Enzyme concentrations

• Parameters

 Linlog models have several advantages for our purpose:

• Analytical solution of 

• Parameter estimation reduced to linear regression problem

• Parameters have interpretation in terms of elasticity coefficients

Heijnen (2005), Biotechnol. Bioeng., 91(5):534-45



35

Parameter estimation in linlog models

 High-throughput data sets are becoming available that allow

estimation of parameters in linlog models

Parallel measurement of enzyme and metabolite concentrations, and 

metabolic fluxes

Berthoumieux et al. (2011), Bioinformatics, in press

Ishii et al. (2007), Science, 316(5284):593-7

 Estimation of parameters in linlog models

from experimental data

• Technical problems: missing data, non-

identifiability issues, …

• EM approach for estimation of parameter

values, tailored to linlog models
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Application to E. coli central metabolism

 Evaluation of results by comparing estimated and known signs

of elasticities

• Distinction between non-identifiable, non-significant, correctly and 

wrongly estimated elasticity signs

• Discrepancies due to missing values, noise, reactions near equilibirum, 

and …

Berthoumieux et al. (2011), 

Bioinformatics, in press



Conclusions

Metabolic coupling gives rise to indirect interactions between 

enzymes and genes in gene regulatory networks

Systematic derivation of effective structure of gene regulatory network on 

time-scale of gene expression

Metabolic coupling leads to densely-connected networks with 

robust and flexible structure

 Robust to changes kinetic properties (results not dependent on 

parameter values and rate laws)

 Flexible rewiring of network structure following radical changes in 

environment (changes in flux directions)

 Including metabolic coupling in dynamic models is essential 

for reproducing gene expression data
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